Workshop 1, Math 311

1. Can there be a smallest positive real number?
(a) Prove that if $a>0$, then $1 / a>0$.
(b) By comparing a and $(a)(1 / 2)$, prove the following statement: If $a \in R$ is such that $0 \leq a<\epsilon$ for every $\epsilon>0$, then $a=0$.
(c) Prove that if $a, b \in R$ and if, for every $\epsilon>0$ we have $a \leq b+\epsilon$, then $a \leq b$.
2. Let n be a natural number.
(a) Prove the following by induction:

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

(b) Prove a similar formula for the sum of all odd numbers from 1 to n (you might need to consider the cases when n is odd and when n is even).
3. Let $0<a<b$ and $0<c<d$. Prove that $0<a c<b d$.
4. We say that a property holds for "all n sufficiently large" if there exists a number n_{0} such that the property holds for all natural numbers $n \geq n_{0}$.
(a) For which n do we have $n^{3} \leq n$!? In other words, what is "sufficiently large" in this case?
(b) Prove that $n^{3} \leq n$! for all n sufficiently large. (You might need to use 3).
(c) Prove that $n^{6} \leq n$! for all n sufficiently large.
(d) Let k be a fixed natural number. Prove that $n^{k} \leq n$! for all n sufficiently large.

