Advanced Calculus I 311

Review Exercises

1. Let $\left(x_{n}\right)$ be a sequence of real numbers. Determine whether each of the following equivalences is true or false. Where applicable, give a counterexample for the direction that is false.
a. $\left(x_{n}\right)$ convergent if and only if $\left(x_{n}\right)$ monotone and bounded.
b. $\left(x_{n}\right)$ Cauchy if and only if $\left(x_{n}\right)$ Cauchy.
c. $\left(x_{n}\right)$ convergent if and only if every subsequence of $\left(x_{n}\right)$ is convergent.
d. $\left(x_{n}\right)$ is Cauchy if and only if $\left(x_{n}\right)$ bounded.
2. Determine whether each of the following sequences is convergent or divergent. Prove your claim. You must use each of the following theorems or techniques at least once: definition of convergence $(\epsilon-K(\epsilon))$, Monotone Convergence Theorem, Divergence Criterion, Cauchy Convergence Criterion.
a. $x_{n}=\frac{1}{n^{2}+a}$ where $a>0$
b. $y_{n}=\cos (n)$
c. $z_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}$
d. $t_{1}=1, t_{n}=\sqrt{3+t_{n-1}}$ for $n \geq 2$
e. $s_{n}= \begin{cases}2-1 / n & \text { if } n \text { even } \\ -2+1 / n & \text { if } n \text { odd }\end{cases}$
3. Let $I=[0,1]$.
a. Prove that the set of cluster points of $I \cap \mathbf{Q}$ is the set I.
b. Prove that the point 5 is not a cluster point for I.
4. Determine whether each of the following functions has a limit or not at the indicated point. Prove your claim. You must give a proof using each of the following techniques at least once: $\epsilon-\delta$, sequential argument, Squeeze Theorem, Divergence Criterion
a. $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$ where $c>0$
b. $\lim _{x \rightarrow 1} \frac{2 x-2}{3\left(x^{2}-1\right)}=\frac{1}{3}$
c. $\lim _{x \rightarrow 0} \cos (1 / x)$
d. $\lim _{x \rightarrow 0} x \cos (1 / x)$
5. Both of the following functions is not defined at $x=1$. Can either of them be defined at $x=1$ in such a way that they become continuous on all of \mathbf{R} ? Prove your claims.

$$
f(x)=\frac{x-1}{x^{2}-x} \quad g(x)=\frac{1}{x-1}
$$

6. Prove that $x_{n}=\frac{1}{3^{n}}$ is a contractive sequence but $y_{n}=1 / n$ is not.
7. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Let $|f|(x):=|f(x)|$.
a. Prove that if $\lim _{x \rightarrow c} f(x)$ exists then $\lim _{x \rightarrow c}|f|(x)$ exists .
b. Is the converse true? If so, prove it. If not, give a counterexample.
