Advanced Calculus I 311

Review Exercises

1. Prove the following assertions about $a, b \in \mathbf{R}$. You must give reasons for every step!

a. -(a+b) = -a + -bb. -(a/b) = (-a)/b = a/(-b) if $b \neq 0$ c. $a \cdot a = 1$ if and only if a = -1 or a = 1d. If 0 < a < 1 then $0 < a^n < a^m < 1$ for all $n, m \in \mathbb{N}$ such that n > m.

- 2. Prove that $\sqrt{5}$ is an irrational number.
- 3. Find all $x \in \mathbf{R}$ such that |x 1| + |x + 2| = 5.
- 4. Let I = [0, 1].

a. Prove that for all $\epsilon > 0$, the neighborhood $V_{\epsilon}(0)$ is not contained in I.

- b. Prove that for all $a \in (0, 1)$, there exists an $\epsilon > 0$ such that $V_{\epsilon}(a)$ is contained in I.
- 5. Let A and B be bounded subsets of \mathbf{R} .
 - a. Prove that $A \cup B$ is a bounded set.
 - b. Prove that $\sup(A \cup B) = \sup\{\sup A, \sup B\}$.
- 6. Let A be a nonempty bounded subset in **R**. Let b < 0. Let $bA := \{ba : a \in A\}$. Show that

$$\inf(bA) = b(\sup A).$$

- 7. Let $S := \{1/n 1/m : n, m \in \mathbb{N}\}$. Find $\inf S$ and $\sup S$.
- 8. Let $I_n = (-1/n, 1/n)$ for $n \in \mathbf{N}$. Show that 0 is the only real number that belongs to all I_n .
- 9. Prove that the set of odd numbers is countable.