
Advanced Calculus I
Extra Credit Project — Polynomial Approximations

Please write all answers on separate sheets of paper. Your answers should be numbered
and in the same order in which the problems appear. Your project should be stapled and
your name should appear on every sheet.

Introduction: In this project you will learn about different techniques of approximating
continuous functions by polynomials. You will use MAPLE to help you calculate various
approximations and graph them.

The Approximation Problem: Given a continuous function f : [0, 1] → R and an
ε > 0, we wish to find a polynomial p such that

|f(x) − p(x)| < ε for all 0 ≤ x ≤ 1.

In other words, we wish to approximate f by p in such a way that the error f(x) − p(x)
at each x is at most ε. The Weierstraß Approximation Theorem guarantees the existence
of such polynomials, but doesn’t indicate how one would construct them. We will explore
various solutions to this problem for the function f(x) = |x − 1/2| on the interval [0, 1].

1. Use MAPLE to plot f(x). Use the command

>plot(abs(x-1/2),x=0..1);

Remember that the > is the MAPLE prompt. The command that you type is the boldface
text after the prompt.

Part I - Connect the Dots: A “naive” appoach to the approximation problem is
to just pick points (x1, f(x1)), (x2, f(x2)), . . . (xn, f(xn)) and find the polynomial that
connects those points. For example, if you want to approximate f(x) by a parabola
p(x) = a2x

2 + a1x + a0 (that is, a polynomial of degree 2), you will need three distinct
points (x1, f(x1)), (x2, f(x2)) and (x3, f(x3)) in order to determine p(x).

2. Find the parabola p(x) which passes through the points (0, 1/2) and (1/2, 0) and (1, 1/2).
In other words, you want to find a2, a1 and a0 such that

p(0) = a2 · 02 + a1 · 0 + a0 = 1/2

p(1/2) = a2 · (1/2)2 + a1 · 1/2 + a0 = 0

p(1) = a2 · 12 + a1 · 1 + a0 = 1/2

3. Use MAPLE to plot p(x) along with f(x). You can plot them all on one set of axes. If,
for example, you obtained the result p(x) = 2x2 − 5x + 3, then you would type

>plot([abs(x-1/2), 2*xˆ2 - 5*x + 3], x=0..1);

4. By looking at the graph, determine for which x is p(x) a good approximation to f(x).
If ε = 1, do we have |f(x) − p(x)| < ε for all 0 ≤ x ≤ 1? What if ε = .1 or .01?
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It is natural to assume that one can get a better approximation simply by picking
more points and finding the polynomial that goes through all of them. Such a polynomial
is called an interpolation polynomial. There is a command in MAPLE that creates this
polynomial for you. All you have to do is supply the points. For example, if you want the
polyomial of smallest degree that goes through (0, 1/2), (1/4, 1/4), (1/2, 0), (3/4, 1/4) and
(1, 1/2), type:

>p5:=interp([1, 1/4, 1/2, 3/4, 1],[1/2, 1/4 , 0, 1/4, 1/2],x);

where [1, 1/4, 1/2, 3/4, 1] represents all of the x values and [1/2, 1/4, 0, 3/4, 1/2] represents
the corresponding f(x) values. The x at the end tells MAPLE that the interpolation
polynomial should be a function of the variable x.

5. Using MAPLE, calculate p5 and find interpolation polynomials with 8, 10, 20 points.
You can choose points that are evenly spaced (as for p5) or make up your own set of points.
Assign each of these polynomials a name (such as we did for p5). In order to avoid making
vectors with 10 or 20 entries by hand, you can use the following commands:

>X:=[seq((i-1)/19, i = 1..20)]; Y :=[seq(abs((i-1)/19 - 1/2), i=1..20)];

Then you can create your interpolation function (which we will call here p20) by typing:

>p20 := interp(X,Y,x);

6. Using Maple, plot p, p5, p8, p10 along with f(x) on the same axes:

>plot([abs(x-1/2),p,p5,p8,p10],x=0..1);

7. Now include p20:

>plot([abs(x-1/2),p,p5,p8,p10,p20],x=0..1);

8. What happens as you use more and more points? What is the error for each of the
interpolation polynomials?

As you can see from this experiment, the problem of choosing a good approximation
to f(x) is more subtle than simply finding a polynomial that shares some of the same
values as f .

Part II - Bernštĕın Polynomials:†
Definition: Let f : [0, 1] → R be continuous. The nth Bernštĕın polynomial for f is the
polynomial Bn(x) defined by

Bn(x) =
n∑

k=0

f(
k

n
)
(

n

k

)
xk(1 − x)n−k

where (
n

k

)
=

n!
k!(n − k)!

.

† S. N. Bernštĕın (born 1880), Russian mathematician
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Notice that in order to calculate Bn(x) one must evaluate f at the n + 1 evenly spaced
points 0, 1/n, . . . , k/n, . . . , (n − 1)/n, 1 in the interval [0, 1].

9. Calculate the first six Bernštĕın polynomials for f(x) = |x − 1/2| on the interval [0, 1].

10. Using MAPLE, plot B1, B2, B4 and B6, along with f(x) on the same set of axes. You
might first want to assign the Bernštĕın polynomials names such as b1, b2, b4, b6. For
example, if B1(x) = 1/2 then type

>b1 := 1/2;

Then, in order to plot the graphs, type

>plot([abs(x-1/2),b1,b2,b4,b6],x=0..1);

11. What is the error of approximation for each Bernštĕın polynomial?

12. We now use MAPLE to calculate a few more Bernštĕın polynomials. MAPLE has a
built-in function called bernstein which does just that. First type

>readlib(bernstein);

then type

>b10 := bernstein(10, x -> abs(x-1/2),x);

This will assign b10 the value of B10(x). Repeat this for various n (n = 15, 20, 25, 30).
You can print out the results and paste them into your project (instead of handwriting
them in).

13. Plot all Bernštĕın polynomials that you calculated along with f(x) on the same set of
axes. What happens as n becomes larger?

14. By looking at the graph, determine at which point x0 is the error |f(x) − Bn(x)| the
greatest.

15. Calculate Bn(x0) for all n. The point x0 is the same one that you just found. Hint:
You will need to use the binomial identity:

n∑
k=0

(
n

k

)
xk(1 − x)n−k = 1

16. We now assume that the results from questions 14 and 15 are true ‡. In other words,
that

|f(x)− Bn(x)| ≤ |f(x0) − Bn(x0)| ∀n 0 ≤ x ≤ 1.

where Bn(x0) is the same as in question 15. Prove that the sequence (Bn(x)) converges
uniformly to f(x) on the interval [0, 1].

‡ Note that proving these results is no trivial matter.
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17. How large does n have to be in order for Bn(x) to approximate f(x) with an error of
at most .001?

As you can see from these exercises, the Bernštĕın polynomials are a much better ap-
proximation to f(x) = |x− 1/2| than the interpolation polynomials. In general, Bernštĕın
polynomials can be used to closely approximate any continuous function on a closed inter-
val:
Theorem (Bernštĕın): If f is continuous on [0, 1], then its Bernštĕın polynomials Bn

converge uniformly to it on [0, 1] as n → ∞.

A Little History: So how did Bernštĕın come up with such polynomials? He probably
knew a bit of probability theory. Suppose that one has a coin with the property that the
probability of its showing heads after a single toss is x (0 ≤ x ≤ 1). Then the probability
of its showing tails after one toss is 1 − x. Moreover, the probability of obtaining exactly
k heads in n tosses is (

n

k

)
xk(1 − x)n−k.

Since we must obtain some number of heads from 0 to n in n tosses of the coin, we have:
probability of getting 0 heads + probability of getting 1 head + ... + probability of getting
n heads =

n∑
k=0

(
n

k

)
xk(1 − x)n−k = 1

Now, think of f(k/n) representing the amount of money that you win (or lose) if you toss
exactly k heads. Then

n∑
k=0

(
n

k

)
f(k/n)xk(1 − x)n−k

represents the expected value that you will win with n tosses. It is a consequence of a
theorem in probability theory called The Law of Large Numbers that as n becomes larger,
the expected value approaches f(x).
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