LAB 1: Matrix and Vector Computations in Matlab

In this lab you will use Matlab to study the following topics:

- How to create matrices and vectors in Matlab.
- How to manipulate matrices in Matlab and create matrices of special types.
- How to add matrices and multiply a vector by a matrix by Matlab.
- How to find the reduced row echelon form of a matrix by Matlab.
- The use of matrices in the Leontief input-output economic model.

The Matlab computer environment is designed for matrix computations and it uses standard linear algebra notation. This makes the Matlab commands short and easy to remember.

Preliminaries

Important Note: Before you start Lab 1, you need to do the Matlab Demo and pay close attention to all the information in it. You will need this information for all of Labs 1 6 , and much of this information will not be repeated in Labs $1-6$.

Reading from Textbook: Before beginning the Lab, read through Sections 1.1, 1.2, 1.3 and 1.4 of the textbook and work the assigned homework exercises for these sections to get familiar with matrices and vectors. You can look at Appendix D of the textbook to learn more about Matlab.

Demonstration of Matlab: The basic mode of Matlab is interactive. After you start the Matlab program and obtain the prompt >>, you type commands that MatLab then executes when you press the Enter key. If you have never used Matlab before, we suggest you type demo at the Matlab prompt now. This will open a new window with documentation about Matlab. Click on Getting Started with MATLAB for a quick tutorial.
Again: It is important for you to work through all of the details in the MatLab Demo assignment if you have not done so already.

Directory: You will need a dedicated directory on your computer for Matlab files and output. Somewhere on your computer, make a directory (also called a folder) titled MatlabFiles. On the left hand side of the Matlab window there is a list of the files and directories on your computer. Navigate through the list to select your directory MatlabFiles.

Tcodes: In this course you will use some instructional Matlab m-files called Tcodes. To obtain any of these files, use a web browser and go to the Math Department Home page http://www.math.rutgers.edu. Click on course materials, then on Math 250 Introduction to Linear Algebra, and then on Matlab Teaching Codes. You will see a directory of the m-files. Click on the particular m-files that you need. Then in the menu bar click on Files and Save As. Save the m-files in your directory MatlabFiles. For this lab you will need the Teaching Code

```
rrefmovie.m
```

Before opening Matlab to work on the Lab questions you should copy these codes to your directory by the method described above.

Diary File: Now that you are familiar with all of the information in the Matlab Demo assignment, you can begin to work through this assignment. As in the Demo assignment, you will need to record the results of your Matlab session to generate your lab report. Now type

```
diary lab1.txt
```

followed by the Enter key. Now each computation you make in MatLab will be saved in your directory MatlabFiles in a text file named lab1.txt. You can then edit this file using your favorite text editor. Important: If you use Microsoft Word, be sure to save the file as unformatted. When you have finished your Matlab session you can turn off the recording by typing diary off at the Matlab prompt (don't do this now).
If you want to stop your Matlab session before completing a lab assignment, you can reopen the diary file the next time you start Matlab. If you use the same file name, the results of your new Matlab session will be written at the end of the old diary file. You may prefer to use different names (such as lab1a.txt, lab1b.txt) for each session on an assignment, and then merge the files when you prepare your lab write-up with a text editor. Of course, for the other labs you will change the filename to lab2.txt, and so forth.

Lab Write-up: Now that your diary file is open, enter the command format compact (so that when you print out your diary file it will not have unnecessary spaces). Enter the following comments into MATLAB, filling in your own information where appropriate.

```
% [Name]
% [Last 4 digits of RUID]
% Section [Section number]
% Math 250 MATLAB Lab Assignment #1
```

Put labels to mark the beginning of your work on each part of each question, so that your edited lab write-up has the format

```
% Question 1 (a)...
    \vdots
% Question 1 (b)...
```

and so on. Be sure to answer all the questions in the lab assignment. Insert comments in your diary file as you work through the assignment.

General guidelines: The Matlab lab assignments are intended to be interactive exercises. You should follow the instructions precisely and carefully inspect the output of each command. Think about what the result means.

Random Seed: When you start your Matlab session, initialize the random number generator by typing

```
rand('seed', abcd)
```

where $a b c d$ are the last four digits of your Student ID number. This will ensure that you generate your own particular random vectors and matrices.

BE SURE TO INCLUDE THIS LINE IN YOUR LAB WRITE-UP

The lab report that you hand in must be your own work. The following problems use randomly generated matrices and vectors, so the matrices and vectors in your lab report will not be the same as those of other students doing the lab. Sharing of lab report files is not allowed in this course.
Question 1. Creating Matrices and Vectors
(a) Be sure that you have set the seed of the random number generator as described above. The Matlab command rand (m, n) creates an $m \times n$ matrix whose entries are random real numbers between 0 and 1 . Type $R=\operatorname{rand}(2,3)$. Then use the up-arrow key to generate two more samples of the random matrix R. Notice how the entries in R change each time the command is executed.

With Matlab it is easy to form new matrices from those that are already in the workspace and to create matrices of special types.
(b) Type each of the following commands that generate special matrices. eye(4) $\quad \operatorname{zeros}(3) \quad \operatorname{zeros}(3,5) \quad$ ones $(2,3) \quad \operatorname{diag}\left(\left[\begin{array}{llll}4 & 5 & 6 & 7\end{array}\right]\right)$

More about Matlab:

The following commands and their output should be removed from your report before you finalize it. Your next answer that goes into your final report will be for Question 3 below.

Suppressing Displays: When you place a semicolon at the end of a command, the command will be executed but the result will not be displayed on the screen. This is very useful when you are creating big matrices. Try typing $z=[3: 0.2: 5]$; to create a long row vector with equally spaced entries(note the semicolon at the end). Then type z to display the vector z.

Format Commands: You can control how numbers are displayed on the screen (this does not affect the internal arithmetic). Type

$$
\mathrm{y}=\left[\begin{array}{ll}
4 / 3 & 1.2345 \mathrm{e}-6
\end{array}\right] ;
$$

Then observe the values you get for y when you type the following:

```
format short, y
format long, y
format short e, y
format rat, y
```

Be sure to remove these sample MATLAB commands and their output from your final Lab write-up.

Question 3. Matrix Addition and Matrix-Vector Multiplication

Before continuing with the lab, enter format short and format compact at the Matlab prompt. Keep these two commands in your report when you finalize your diary file.
Generate vectors \mathbf{u} and \mathbf{v} and matrices A and B by typing

$$
\begin{array}{ll}
u=f i x(10 * r \operatorname{rand}(3,1)), & v=f i x(10 * r a n d(3,1)), \\
A=f i x(10 * \operatorname{rand}(2,3)), & B=f i x(10 * r a n d(2,3))
\end{array}
$$

These matrices have entries randomly selected from the numbers $0,1, \ldots, 9$.
(a) To obtain a linear combination $s A+t B$ of the matrices A and B (where s and t are real numbers) using Matlab, you must type $\mathrm{s} * \mathrm{~A}+\mathrm{t} * \mathrm{~B}$. This is only defined when A and B are the same size. The transpose A^{T} of A is obtained by typing A^{\prime}.
Calculate the following using Matlab.

$$
A+B, \quad B+A, \quad 6 B, \quad 2(3 B), \quad 6 A+15 B, \quad 3(2 A+5 B), \quad 3 A, \quad\left(3 A^{T}\right)^{T}
$$

Insert comments in your diary file that explain the properties of matrix addition and scalar multiplication that these calculations illustrate. (See Theorems 1.1 and 1.2 on pages 6 and 7 of the text.)
(b) To obtain the matrix-vector product $A \mathbf{u}$ using MatLab, you must type $A * u$ (remember that a vector is just a matrix with one column).
Calculate the following using Matlab.

$$
A \mathbf{u}+A \mathbf{v}, \quad A(\mathbf{u}+\mathbf{v}), \quad(A+B) \mathbf{u}, \quad A \mathbf{u}+B \mathbf{u}, \quad A(3 \mathbf{u}), \quad 3 A(\mathbf{u})
$$

Insert comments in your diary file that explain the properties of the matrix-vector product that these calculations illustrate. (See Theorem 1.3 on page 24 of the text.)

Question 4. Gaussian Elimination and Reduced Row-Echelon Form

Now that you know how to do matrix calculations with Matlab, you can easily carry out the steps in Gaussian elimination. Before starting work on this question, type rrefmovie at the Matlab prompt.

If you get an error message ??? Undefined function or variable rrefmovie, click on Set Path on the toolbar. Insert the name of the directory where you have copied the Tcode rrefmovie.m, and save the result.
IMPORTANT: You will need to do this in future labs also, when necessary.
You will see a step-by-step example of the row operations that transform a matrix A into its reduced row echelon form $R=\operatorname{rref}(A)$. In this demonstration, each pivot is chosen to be the largest in its column (for numerical stability), so extra row interchanges are used. Since rref (A) is uniquely determined by A, this does not affect the final answer. (Do not include this part in your lab write-up. Your answers for Question 4 will begin with the answer to part (a) below.)
(a) Generate a 3×4 matrix A with random integer entries by the command

$$
A=f i x(10 * \operatorname{rand}(3,4))
$$

To transform A into $R=\operatorname{rref}(\mathrm{A})$, start with $R=A$. Normalize the first row of R to get $R(1,1)=1$:

$$
R=A ; R(1,:)=R(1,:) / R(1,1)
$$

(note the use of the colon to operate on whole rows of the matrix). If your random matrix happens to have $A(1,1)=0$, then interchange rows to get a nonzero entry in the $(1,1)$ position before doing the calculation above. Now subtract a multiple of the first row of R from the second row to make $R(2,1)=0$:

$$
R(2,:)=R(2,:)-R(2,1) * R(1,:)
$$

Repeat this procedure to make $R(3,1)=0$:

$$
R(3,:)=R(3,:)-R(3,1) * R(1,:)
$$

(you can minimize typing by using the up-arrow key and editing the command line). The first column of your matrix R should now be the same as the first column of rref (A).
(b) Operate on R by the same method as in (a) to obtain the second column of rref (A). First normalize row 2 of R, then subtract multiples of row 2 from rows 1 and 3 to put zeros in the $(1,2)$ and $(3,2)$ positions (you can minimize typing by using the up-arrow key and editing the commands used in part (a)). Be sure to refer to the entries in your matrix symbolically as was done in part (a); don't type explicit decimal numbers in the Matlab commands.
(c) Operate on R by the same method as in (b) to obtain the third column of rref (A). First normalize row 3 of R, then subtract multiples of row 3 from rows 1 and 2 to put zeros in the $(1,3)$ and $(2,3)$ positions.
(d) Your matrix R should now be transformed into $\operatorname{rref}(\mathrm{A})$ (since A is a random 3×4 matrix, $\operatorname{rref}(\mathrm{A})$ is (almost) sure to have rank 3). Check your answer by Matlab with the command rref (A). If the Matlab answer is not the same as the current value of your R, go back and redo your calculations.

Question 5. Leontief Input-Output Model

Read pages 56-59 of Section 1.5 in the text and study Practice Problem 1 on page 59 and its solution on page 65 .
(a) Use Matlab to create the input-output matrix C for the economy described in Exercise 22 on page 63, as follows: Create 3×1 column vectors \mathbf{a}, \mathbf{m}, and \mathbf{s} that correspond to the agricultural, manufacturing, and services sectors, respectively. Then set $C=\left[\begin{array}{lll}\mathbf{a}, & \mathbf{m}, & \mathbf{s}\end{array}\right]$.
(b) Use the gross production vector \mathbf{x} in part (a) of Exercise 22 and the matrix C to calculate the net production vector. Describe in words the net production (in millions of $\$$) of each sector of the economy.
(c) Let \mathbf{d} be the demand vector described in part (b) of Exercise 22.
(i) Write (in symbolic form) the inhomogeneous equation that the gross production vector \mathbf{x} must satisfy in order to satisfy demand \mathbf{d}. (See the boxed statement at the top of page 59 of the text.)
(ii) Use the Matlab rref command on a suitable augmented matrix to solve the equation in (i) for \mathbf{x}. Describe in words the gross production (in millions of \$) of each sector of the economy that are needed to satisfy the given demand \mathbf{d}.

Final editing of lab write-up: After you have worked through all the parts of the lab assignment, you will need to edit your diary file. Be sure to consult the instructions at the end of the Matlab Demo assignment. Here is a summary:
Correct all typing errors and remove any unnecessary blank lines in your diary file. Your write-up must contain only the input commands that you typed which were required by the assignment (including format compact at the beginning), the output results generated by Matlab, immediately following the corresponding input commands, your answers to the questions in the indicated places, and the indicated comments such as question numbers.
In particular, remove the commands load, save, clear, format, help, diary, with the exception of format compact and, at the beginning of Question 3, format short, and remove any output from the commands load, save, clear, format, help, diary, as well.
Save the file as a plain text file.
Lab write-up submission guidelines: Preview the document before printing and remove unnecessary page breaks and blank space. Put your name and last four digits of your student ID number on each page, in case your pages become separated. (If you have difficulty doing this using your text editor, you can write this information by hand after printing the report.)
You must print your lab write-up. Staple the pages together. Electronic submissions will not be accepted. Late submissions will not be accepted.

Important: The submission of an unedited diary file without comments will be penalized by the removal of a significant number of points from the score.

