Review Problems for the first exam in Math 151 Spring 2009.

NOTE : These are only practice problems!

1. Find the equation of the line that passes through $(2,4)$ and is perpendicular to the line $2 x+3 y=12$.
2. Let $f(x)=\sqrt{x^{2}+2 x-15}, \quad g(x)=\frac{1}{x}$
a) Find the domain of the function $f(x)$.
b) Find $g(f(x))$ and $f(g(x))$.
c) Find the domains of $g(f(x))$.
3. Find the exact value of each of the following limits. Show all work and/or give reasons for your
answers:
a) $\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x^{2}-4}$
b) $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+6}{x^{2}-4}$
c) $\lim _{x \rightarrow 0} \frac{\tan 2 x}{\tan 7 x}$
d) $\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$
e) $\lim _{x \rightarrow 3} \frac{|x-3|}{x-3}$
f) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
4. Let $g(x)=x^{5}+x^{3}+30$. Without graphing the function g, use a theorem to show that there is at least one number $c \in(-2,2)$ such that $g(c)=0$.
HINT: don't try to find c !
5. Let

$$
f(x)= \begin{cases}x^{2}+1 & x>2 \\ A & x=2 \\ 2 x+1 & 2>x \geq 0 \\ x^{2}+3 & x<0\end{cases}
$$

a)For what value of A is f continuous at $x=2$? Explain!
b)Find the following limits or write DNE if the limit doesn't exist. Show all work.
$\lim _{x \rightarrow 2} f(x), \quad \lim _{x \rightarrow 1} f(x), \quad \lim _{x \rightarrow 0} f(x), \quad \lim _{x \rightarrow(-1)} f(x)$
b) Is $f(x)$ differentiable at $x=0$?
6. Find the following derivatives from the definition:
a) $f(x)=x^{2}+3 x$
b) $g(x)=\frac{1}{x+2}$
c) $h(x)=\sqrt{x-3}$
7. The line $y=2 x+3$ is tangent to the parabola $y=x^{2}+B$. Find B.
8. Find the derivative of the following functions. Don't simplify!
a) $f(x)=\frac{7}{x^{3 / 7}}+\sqrt{x^{5}}+x^{7}+45$
b) $g(x)=(x+9) *\left(x^{2}-7 x\right)$
c) $h(x)=\left(\frac{x^{2}+7}{x^{5}-8 x}\right)^{9}$
d) $k(x)=\frac{\left(x^{4}+2\right)^{6}}{\sqrt[3]{x^{3}+5 x}}$
e) $\ln x^{5}+x-\ln x$
9. Find the equation of the tangent line for the graph of $f(x)=2 * \sqrt{x}+x^{2}-5$ at $x=1$.
10. Let $f(x)=g(\sqrt{x+3})$. Find $f(6)$ and $f^{\prime}(6)$.

It is impossible to find g, but it will be useful to use some of the following known values of $g(x)$ and $g^{\prime}(x)$:
$g(1)=2, g(2)=5, g(3)=7, g(4)=2, g(5)=11, g(6)=13$ and $g(7)=21$
$g^{\prime}(1)=3, g^{\prime}(2)=2, g^{\prime}(3)=8, g^{\prime}(4)=10, g^{\prime}(5)=12, g^{\prime}(6)=21$ and $g(7)=23$.
11. Sketch a possible graph of F on $[-3,3]$ such that:
F is continuous on $[-3, \quad 0)$ and $(0,3], \lim _{x \rightarrow 0^{+}} F(x)=5, \quad \lim _{x \rightarrow 0^{-}} F(x)=-2, F$ is not differentiable only at $x=0$ and $x=1$.
12. Let $y=2 x^{4}+3 x^{2}+12$. Find $\frac{d^{3} y}{d x^{3}}$.
13. The distance s (in feet) covered by a car t seconds after starting from rest is given by $s(t)=$ $20 t+6 t^{2}+t^{3}$, when $0 \leq t \leq 20$.
a) What is the velocity of the car 5 seconds after starting from rest?
b) What is the acceleration of the car at that time?
14. Sketch a possible function on the domain $(-2,4)$ that is :

Not differentiable only at $x=(-1.5),(-1), 0,0.5,1,3$, not continuous only at $x=(-1), 0.5,3$ and has no limit only at $x=0.5,3$.
15. Let $h(x)=f(g(x))$. Assume that $f(1)=2, \quad f^{\prime}(1)=7 \quad f(2)=5 \quad f^{\prime}(2)=5, \quad g(1)=$ 2 and $g^{\prime}(1)=3$. Find $h^{\prime}(1),(f g)^{\prime}(1),(f / g)(1), \quad f(g(1))$.
16. Suppose that f and g are differentiable functions such that $f(g(x))=8 x^{2}$ to all real numbers x. Assume that $f(2)=7, \quad g(2)=4, \quad f^{\prime}(2)=4 \quad$ and $\quad f^{\prime}(4)=2$. What is $g^{\prime}(2) ?$
17. Expend the following expression: $\ln \frac{\sqrt[5]{x} x^{3} y^{2}}{6 \sqrt{y} x^{9}}$

