1. Suppose \(f(x) = \frac{3}{x+2} \). Use the definition of derivative to find \(f'(x) \).

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{3}{x + h + 2} - \frac{3}{x + 2} \]

\[
= \lim_{h \to 0} \frac{3(x + 2) - 3(x + h + 2)}{h(x + h + 2)(x + 2)} = \lim_{h \to 0} \frac{-3h}{h(x + h + 2)(x + 2)} \]

\[
= \lim_{h \to 0} \frac{-3}{(x + h + 2)(x + 2)} = \frac{-3}{(x + 2)^2}.
\]

2. Find an equation for the line tangent to the graph of \(y = \frac{4x}{2 + x^2} \) at the point where \(x = 1 \).

When \(x = 1 \), the value of \(y \) is \(4/3 \).

\[
\frac{dy}{dx} = \frac{(2 + x^2)4 - (4x)(2x)}{(2 + x^2)^2} = \frac{8 - 4x^2}{(2 + x^2)^2}.
\]

When \(x = 1 \), this is \(4/9 \). Thus an equation for the tangent is

\[
y - \frac{4}{3} = \frac{4}{9}(x - 1).
\]

3. Assume that the functions \(u(x) \) and \(v(x) \) are defined and differentiable for all real numbers \(x \). The following data is known about \(u, v, \) and their derivatives.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(u(x))</th>
<th>(v(x))</th>
<th>(u'(x))</th>
<th>(v'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-2</td>
</tr>
</tbody>
</table>

Define \(f(x) = u(x)v(x) \), \(g(x) = u(x)/v(x) \), and \(h(x) = u(v(x)) \). Give the values of the following with a brief indication of how they were obtained:

a) \(f'(2) \)

\[
f'(2) = u(2)v'(2) + u'(2)v(2) = 3 \cdot 2 + (-1) \cdot 4 = 2.
\]

b) \(g'(3) \)

\[
g'(3) = \frac{v(3)u'(3) - u(3)v'(3)}{v(3)^2} = \frac{1 \cdot 3 - 2 \cdot (-1)}{1^2} = 5.
\]
c) $h'(4)$

$$h'(4) = u'(v(4))v'(4) = u'(3)v'(4) = 3 \cdot (-2) = -6.$$

(14) 4. Suppose that the function $f(x)$ is described by

$$f(x) = \begin{cases}
3 - x^2 & \text{if } x < 0 \\
Ax + B & \text{if } 0 \leq x \leq 1 \\
2^x & \text{if } 1 < x
\end{cases}.$$

a) Find A and B so that $f(x)$ is continuous for all numbers. Briefly explain your answer.

The value of $f(0)$ is B and

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} 3 - x^2 = 3.$$

If $f(x)$ is continuous at 0, then $B = 3$.

The value of $f(1)$ is $A + B = A + 3$ and

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2^x = 2.$$

Therefore $A + 3 = 2$ or $A = -1$.

b) Sketch $y = f(x)$ on the axes given for the values of A and B found in a) when x is in the interval $[-2, 2]$.

![Graph of the function](image-url)
(20) 5. Evaluate the indicated limits exactly. Give evidence to support your answers.

a) \[\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} \]

\[\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = \lim_{x \to 1} x + 3 = 4. \]

b) \[\lim_{x \to 2^+} \frac{|x - 1| - 1}{|x - 2|} \]

If \(x > 2 \), then both \(x - 1 \) and \(x - 2 \) are positive and \(|x - 1| = x - 1 \) and \(|x - 2| = x - 2 \). Therefore

\[\lim_{x \to 2^+} \frac{|x - 1| - 1}{|x - 2|} = \lim_{x \to 2^+} \frac{x - 2}{x - 2} = \lim_{x \to 2^+} 1 = 1. \]

c) \[\lim_{x \to 0} \frac{\sin 2x}{\tan 3x} \]

\[\lim_{x \to 0} \frac{\sin 2x}{\tan 3x} = \lim_{x \to 0} \frac{\sin 2x}{\frac{\sin 3x}{\cos 3x}} = \lim_{x \to 0} \frac{\sin 2x \cos 3x}{\sin 3x} = \lim_{x \to 0} \frac{2 \sin 2x \cos 3x}{3 \sin 3x} = \frac{2}{3}. \]

d) \[\lim_{x \to 4} \frac{3x - 2}{\cos(\pi x)} \]

\[\lim_{x \to 4} \frac{3x - 2}{\cos(\pi x)} = \frac{3 \cdot 4 - 2}{\cos(4\pi)} = 10. \]

(10) 6. Suppose that \(f(x) \) is defined and continuous for all real numbers \(x \) and assume that \(f(x) \) takes on the following values: \(f(-2) = 6, f(0) = -3, f(2) = 4, f(3) = 0, f(4) = -1, f(7) = -3 \), and \(f(10) = 8 \).

a) What can be said about the number of solutions to the equation \(f(x) = 0 \)?

There are at least four solutions to the equation \(f(x) = 0 \).

b) Give a list of nonoverlapping intervals in which solutions to the equation \(f(x) = 0 \) can be found.

By the Intermediate Value Theorem there is at least one solution of the equation \(f(x) = 0 \) in each of the intervals \((-2, 0), (0, 2), [3, 3], \) and \((7, 10)\).

(8) 7. What is the domain of \(f(x) = \frac{\ln x + \sqrt{4-x}}{\sin x} \)? Give your answer as a list of intervals. Explain how you arrived at your answer.

\(\ln x \) is defined only for \(x > 0 \).

\(\sqrt{4-x} \) is defined only for \(x \leq 4 \).
\[\frac{1}{\sin x} \] is defined only when \(x \) is not of the form \(n\pi \) for some integer \(n \).

The numerator of \(f(x) \) is defined for \(x \) in the interval \((0, 4]\). However, that interval contains one integer multiple of \(\pi \), namely \(\pi \) itself. Thus the domain of \(f \) consists of the two intervals \((0, \pi)\) and \((\pi, 4]\).

8. In this problem the function \(f(x) \) has domain the open interval \((-4, 4)\). A graph of \(y = f(x) \) is displayed below. Answer the following questions as well as you can based on the information in the graph.

\[\begin{array}{|c|c|}
\hline
x & y \\
\hline
-4 & 4 \\
-3 & 3 \\
-2 & 2 \\
-1 & 1 \\
0 & 0 \\
1 & 0 \\
2 & 0 \\
3 & 1 \\
4 & 4 \\
\hline
\end{array} \]

(a) For which \(x \) is \(f(x) \) not continuous?

\[x = -1 \]

(b) For which \(x \) is \(f(x) \) not differentiable?

\[x = -1 \text{ and } x = 2 \]

(c) For which \(x \) is \(f'(x) = 0? \)

\[x = -2 \]

(d) For which \(x \) is \(f'(x) > 0? \)

For those \(x \) with \(0 < x < -2 \) or \(2 < x < 4 \)
9. a) If \(f(x) = \frac{1 - e^x}{x^2 + 1} \), what is \(f'(x) \)?

\[
f'(x) = \frac{(x^2 + 1)(-e^x) - (1 - e^x)(2x)}{(x^2 + 1)^2}.
\]

b) If \(f(x) = (2x + 3\cos x)(x^4 - x^2) \), what is \(f'(x) \)?

\[
f'(x) = (2x + 3\cos x)(4x^3 - 2x) + (2 - 3\sin x)(x^4 - x^2).
\]

c) If \(f(x) = \sec(x^3 + 2x) \), what is \(f'(x) \)?

\[
f'(x) = \sec(x^3 + 2x)\tan(x^3 + 2x)(3x^2 + 2).
\]