(10) 1. Suppose \(f(x) = \frac{3}{x + 2} \). Use the definition of derivative to find \(f'(x) \).

(9) 2. Find an equation for the line tangent to the graph of \(y = \frac{4x}{2 + x^2} \) at the point where \(x = 1 \).

(12) 3. Assume that the functions \(u(x) \) and \(v(x) \) are defined and differentiable for all real numbers \(x \). The following data is known about \(u, v, \) and their derivatives.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(u(x))</th>
<th>(v(x))</th>
<th>(u'(x))</th>
<th>(v'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-2</td>
</tr>
</tbody>
</table>

Define \(f(x) = u(x)v(x) \), \(g(x) = u(x)/v(x) \), and \(h(x) = u(v(x)) \). Give the values of the following with a brief indication of how they were obtained:

a) \(f'(2) \)

b) \(g'(3) \)

c) \(h'(4) \)

(14) 4. Suppose that the function \(f(x) \) is described by

\[
f(x) = \begin{cases}
3 - x^2 & \text{if } x < 0 \\
Ax + B & \text{if } 0 \leq x \leq 1 \\
2^x & \text{if } 1 < x
\end{cases}
\]

a) Find \(A \) and \(B \) so that \(f(x) \) is continuous for all numbers. Briefly explain your answer.

b) Sketch \(y = f(x) \) on the axes given for the values of \(A \) and \(B \) found in a) when \(x \) is in the interval \([-2, 2]\).
5. Evaluate the indicated limits exactly. Give evidence to support your answers.

\(a) \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} \)

\(b) \lim_{x \to 2^+} \frac{|x - 1| - 1}{|x - 2|} \)

\(c) \lim_{x \to 0} \frac{\sin 2x}{\tan 3x} \)

\(d) \lim_{x \to 4} \frac{3x - 2}{\cos(\pi x)} \)

6. Suppose that \(f(x) \) is defined and continuous for all real numbers \(x \) and assume that \(f(x) \) takes on the following values: \(f(-2) = 6, f(0) = -3, f(2) = 4, f(3) = 0, f(4) = -1, f(7) = -3, \) and \(f(10) = 8. \)

a) What can be said about the number of solutions to the equation \(f(x) = 0? \)

b) Give a list of nonoverlapping intervals in which solutions to the equation \(f(x) = 0 \) can be found.

7. What is the domain of \(f(x) = \frac{\ln x + \sqrt{4 - x}}{\sin x} \)? Give your answer as a list of intervals. Explain how you arrived at your answer.
(8) 8. In this problem the function $f(x)$ has domain the open interval $(-4, 4)$. A graph of $y = f(x)$ is displayed below. Answer the following questions as well as you can based on the information in the graph.

![Graph of $f(x)$]

a) For which x is $f(x)$ not continuous?

ANSWER:

b) For which x is $f(x)$ not differentiable?

ANSWER:

c) For which x is $f'(x) = 0$?

ANSWER:

d) For which x is $f'(x) > 0$?

ANSWER:

(9) 9. a) If $f(x) = \frac{1 - e^x}{x^2 + 1}$, what is $f'(x)$?

b) If $f(x) = (2x + 3\cos x)(x^4 - x^2)$, what is $f'(x)$?

c) If $f(x) = \sec(x^3 + 2x)$, what is $f'(x)$?