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(13) 1. Find an equation for the tangent line to the graph of y2 = x3 � 3xy + 3 at the point
(�2; 1).

The �rst thing to do is to check that the values x = �2, y = 1 satisfy the given equation.
They do.

Di�erentiating both sides of the equation with respect to x and remembering that y is a
function of x, we get

2yy0 = 3x2 � 3xy0 � 3y:

Solving for y0, we obtain

y0 =
3x2 � 3y

2y + 3x
:

At the point (�2; 1), we have
y0 =

3 � 4� 3

2� 6
= �9

4
:

An equation for the tangent is

y � 1 = �9

4
(x+ 2):

(10) 2. Find equations for all vertical and horizontal asymptotes of the function

f(x) =
3ex + 5

7ex � 2
:

(All numbers used should be described by exact expressions, not decimal approximations.
Thus you should write

p
2, not 1.414.)

Since ex goes to 0 as x goes to �1, we have

lim
x!�1

f(x) =
3 � 0 + 5

7 � 0� 2
= �5

2
:

Since ex goes to 1 as x goes to 1, we have

lim
x!1

f(x) = lim
x!1

3 + 5

ex

7� 2

ex

=
3 + 0

7 + 0
=

3

7
:

Thus there are two horizontal asymptotes with equations y = �5=2 and y = 3=7.

The only way f(x) can have a vertical asymptote is for the denominator 7ex � 2 to be 0.
If

7ex � 2 = 0;

then

ex =
2

7
;
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or
x = ln(2=7):

There is one vertical asymptote with equation x = ln(2=7).

In this problem, the use of a graphing calculator can give good insight into the solution.
Graphing the function on [�10; 10] gives

–4

–2

2

4

y

–10 –8 –6 –4 –2 2 4 6 8 10

x

from which you can see what you have to do. (Note: This graph was drawn using Maple,
which automatically puts in the vertical symptote!)

(15) 3. At a certain time, the length of a rectangle is 5 feet and its width is 3 feet. At that
same moment, the length is decreasing at 0:5 feet per second and the width is increasing

at 0:4 feet per second.

What is the length of the diagonal at that time?

How fast is the length of the diagonal changing? Is this length increasing or decreasing?

Let x denote the length of the rectangle, y the width of the rectangle, and z the diagonal
of the rectangle. The variables x, y, and z are all functions of time. In the following
discussion, all derivatives are with respect to time and all distances are measured in feet.
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At the moment in question we are given that x = 5, y = 3, x0 = �0:5, and y0 = 0:4.
By the Pythagorean Theorem, z2 = x2 + y2. Thus at the moment, z2 = 25 + 9 = 34, so
z =

p
34.

Di�erentiating the above equation, we have

2zz0 = 2xx0 + 2yy0;

so

z0 =
2xx0 + 2yy0

2z
=

xx0 + yy0

z
:

Thus at this moment

z0 =
5(�0:5) + 3(0:4)p

34
=
�1:3p
34

:

Since z0 is negative, the length of the diagonal is decreasing.

(10) 4. Suppose that f(x) =
p
2 + 7x3.

Compute f(1).

Compute f 0(1).

Use the linearization (di�erential, tangent line approximation) of f at x = 1 to estimate
f(1:08).

f(1) =
p
2 + 7 = 3.

f(x) = (2 + 7x3)1=2. Thus

f 0(x) = (1=2)(2 + 7x3)�1=2(21x2) =
21x2

2
p
2 + 7x3

:

Hence

f 0(1) =
21

6
=

7

2
:

The linearization of f at x = 1 is

L(x) = f(1) + f 0(1)(x� 1) = 3 +
7

2
(x� 1):

The value of L(1.08) is 3.28.

(5) 5. A friend runs up to you and excitedly explains that she has found a function g with
the following properties:

g is continuous on [0; 1] and di�erentiable on (0; 1).
g(0) = 1 and g(1) = 5.
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g0(x) � 3 for all x in (0; 1).

Explain why you doubt your friend's claim.

By the Mean Value Theorem, there must be a number c in (0; 1) such that

g(c) =
g(1)� g(0)

1� 0
=

5� 1

1
= 4:

However, your friend asserts that g0(x) � 3 for all x in (0; 1) and 4 is bigger than 3. Thus
she must have made a mistake.

(24) 6. Suppose that f(x) =
x2 + 3

x2 + x+ 4
.

(a) What is the domain of f(x)? Why?

Both the numerator and denominator of f are de�ned for all x. Thus the only way f(x)
could not be de�ned is if x2+x+4 = 0. If this is so, then the quadratic formula says that

x =
�1�p1� 16

2
=
�1�p�15

2
:

These values of x are not real numbers, so the domain of f is (�1;1).

(b) What are lim
x!+1

f(x) and lim
x!�1

f(x)? Why?

If x 6= 0, then

f(x) =
1 + 3

x2

1 + 1

x + 4

x2

:

Therefore, as jxj goes to 1, f(x) goes to 1. Thus both limits are equal to 1.

(c) Use calculus to �nd all relative extreme values of f(x).

We must �rst �nd the critical numbers of f .

f 0(x) =
(x2 + x+ 4)(2x)� (x2 + 3)(2x+ 1)

(x2 + x+ 4)2
=

x2 + 2x� 3

(x2 + x+ 4)2
:

Thus f 0(x) is de�ned for all x and if f 0(x) = 0, then

0 = x2 + 2x� 3 = (x+ 3)(x� 1);

which occurs when x = �3 or x = 1.
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The value of f(�3) is 6=5 and f 0(x) changes sign from positive to negative at x = �3.
Thus there is a relative maximum at x = �3.
The value of f(1) is 2=3 and f 0(x) changes sign from negative to positive at x = 1. Thus
there is a relative minimum at x = 1.

(d) The range of a function is the collection of all possible values of that function. What
is the range of f? Explain your answer carefully.

By part (c), both 2=3 and 6=5 are values of f . By the Intermediate Value Theorem, any
number between 2=3 and 6=5 is also a value of f . Thus the range contains [2=3; 6=5]. The
value of f(x) is close to 1 if jxj is big and 1 is between 2=3 and 6=5. If there were any
values of f outside [2=3; 6=5], there would have to be other critical points. Therefore the
range is [2=3; 6=5].

This is another problem where a graphing calculator can give a good idea as to whether you
have correctly analyzed the shape of the graph of this function. Graphing f on [�20; 20]
with values of y limited to [0:6; 1:3] gives

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

y

–20 –10 0 10 20

x

You would still have to do the analysis above, but the picture would help you see whether
you were on the right track.
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(15) 7. You wish to build a shed in the shape of a rectangular box with a square oor. The
materials for the walls cost $1 per square foot and the materials for the oor and roof cost
$2 per square foot. You want the shed to have a volume of 250 cubic feet. What should
the dimensions of the shed be in order to minimize the cost of materials?

Let x denote the length of one side of the square base and let y denote the height of the
shed. Since the volume of the shed must be 250 cubic feet, we have x2y = 250 or

y =
250

x2
:

The cost of materials for the oor and roof is 2 � 2x2. The cost of materials for the four
sides is 4xy. Thus the total cost is

C = 4x2 + 4xy = 4x2 + 4x

�
250

x2

�
= 4x2 +

1000

x
:

Di�erentiating, we �nd

C 0 = 8x� 1000

x2
:

Setting C 0 equal to 0, we get 8x3 = 1000 or x3 = 125. From this we �nd that x is 5 feet
and y is 10 feet. Physical considerations make it clear that this is a minimum.

(8) 8. On the axes below sketch the graph of a function f with the following properties:
The domain of f is (�4; 4) and f is di�erentiable at all points in its domain. f has a
relative minimum at x = �2 and a relative maximum at x = 2. At x = 0 there is a
horizontal tangent line and a point of inection.
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–4

–3

–2

–1

1

2

3

4

–4 –3 –2 –1 1 2 3 4

x

What is the total number of points of inection of the function whose graph you have
sketched?

There are three points of inection in this graph corresponding approximately to x = �1,
x = 0, and x = 1.


