1. Find the following limits (5 points each), giving reasons for your answers. You may use any method from this course.

a. \[\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{x^2 - 2x} = -\frac{1}{8} \]

\[
\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{x(x-2)} = \lim_{x \to 2} \frac{(x+2) - 2x}{x(x-2)(\sqrt{x+2} + \sqrt{2x})} = \lim_{x \to 2} \frac{-2}{x(x+2)} = -\frac{1}{8}
\]

b. \[\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{3x} = e^6 \]

\[y = \left(1 + \frac{2}{x}\right)^{3x}, \quad \ln y = 3x \ln \left(1 + \frac{2}{x}\right) \]

\[\ln y = 3 \ln \frac{1 + \frac{2}{x}}{x} = 3 \lim_{x \to \infty} \frac{\frac{2}{x}}{1 + \frac{2}{x}} = 3 \cdot \frac{2}{x^2} = \frac{6}{x^2} \]

So \[\lim_{x \to \infty} y = e^6 \]

c. \[\lim_{x \to 0} \frac{\sin(5x) - 5x}{x^3} = -\frac{125}{6} \]

\[\lim_{x \to 0} \frac{5 \cos 5x - 5}{3x^2} = \lim_{x \to 0} \frac{-25 \sin 5x}{6x} = \lim_{x \to 0} \frac{-125 \cos 5x}{6} \]

\[= -\frac{125}{6} \]
2. Find the derivatives of the following functions (7 points each). You do not need to simplify your answers.

a. If \(y = \tan(3x^2 + e) \) then \(\frac{dy}{dx} = 6x \sec^2(3x^2 + e) \)

\[
\frac{dy}{dx} = \sec^2(3x^2 + e) \cdot (6x)
\]

b. If \(y = e^{\frac{x}{x+1}} \) then \(\frac{dy}{dx} = \frac{e^{\frac{x}{x+1}}}{(x+1)^2} \)

\[
\frac{dy}{dx} = e^{\frac{x}{x+1}} \cdot \frac{d}{dx} \left(\frac{x}{x+1} \right) = e^{\frac{x}{x+1}} \cdot \frac{(x+1) \cdot 1 - x}{(x+1)^2} = e^{\frac{x}{x+1}} \cdot \left(\frac{1}{(x+1)^2} \right)
\]
3. Find the following indefinite integrals (7 points each).

a. \(\int t^2 \cos(1 - t^3) \, dt = \frac{-1}{3} \sin(1 - t^3) + C \)

\[u = 1 - t^3 \]
\[du = -3t^2 \, dt \]
\[t^2 \, dt = -\frac{1}{3} \, du \]

\[\int \cos u \left(-\frac{1}{3} \, du \right) = -\frac{1}{3} \sin u + C \]
\[= -\frac{1}{3} \sin(1 - t^3) + C \]

b. \(\int \sqrt{x - 1} \, dx = \frac{2}{3} (x - 1)^{3/2} + C \)

\[u = x - 1 \]
\[du = dx \]

\[\int \sqrt{u} \, du = \frac{u^{3/2}}{\frac{3}{2}} + C \]
\[= \frac{2}{3} (x - 1)^{3/2} + C \]
4. Calculate the following definite integrals (7 points each).

a. \(\int_{2}^{3} \frac{\ln(x)}{x} \, dx = \frac{1}{2} \left((\ln 3)^2 - (\ln 2)^2 \right) \)

\[u = \ln x \]
\[du = \frac{1}{x} \, dx \]
\[\int_{\ln 2}^{\ln 3} u \, du = \frac{u^2}{2} \bigg|_{\ln 2}^{\ln 3} = \frac{1}{2} \left((\ln 3)^2 - (\ln 2)^2 \right) \]

b. \(\int_{1}^{2} x \sqrt{x-1} \, dx = \frac{16}{15} \)

\[u = x - 1 \]
\[du = dx \]
\[x = u + 1 \]

\[\int_{0}^{1} (u+1)^{1/2} \, du = \int_{0}^{1} (u^{3/2} + u^{5/2}) \, du \]
\[= \left. \frac{u^{5/2}}{\frac{5}{2}} + \frac{u^{7/2}}{\frac{7}{2}} \right|_{0}^{1} \]
\[= \left(\frac{2}{5} + \frac{2}{3} \right) = \frac{16}{15} + \frac{10}{15} \]
\[= \frac{26}{15} \]
5. (14 points) Estimate the area under the graph of \(f(x) = x^2 + 5x \) from \(x = 3 \) to \(x = 4 \) using 3 equally spaced approximating rectangles and right endpoints. You may leave your answer as a sum. You will receive no credit for evaluating the integral exactly.

\[
\frac{1}{3} \left(f\left(\frac{4}{3} \right) + f\left(\frac{8}{3} \right) + f\left(\frac{12}{3} \right) \right) = \frac{1}{3} \left(\frac{10}{3} \right) + 5 \left(\frac{10}{3} \right) + \frac{11}{3} \left(\frac{10}{3} \right) + 5 \left(\frac{11}{3} \right) + 5 \left(\frac{12}{3} \right) = \frac{840}{27}
\]

You don't have to multiply this out and add it up!

6. (15 points) Find the equation of the normal line to the curve described by

\[5x^2 y + 2y^3 = 22. \]

at the point \((2, 1)\). Any correct equation specifying this line is acceptable.\(^1\)

Normal line: \((y - 1) = \frac{13}{10} (x - 2)\)

Implicit diff: \[10xy + 5x^2 y' + 6y^2 y' = 0 \]
\[10\cdot 2\cdot 1 + 5\cdot 2^2 \cdot y' + 6\cdot 1^2 \cdot y' = 0 \]
\[20 + 20y' + 6y' = 0 \]
\[y' = -\frac{20}{26} = -\frac{10}{13} \]

Slope of normal line is \(\frac{13}{10}\)

\(-1\)The normal line is perpendicular to the tangent line.
7. (14 points) A radioactive frog hops out of a pond full of nuclear waste in Oak Ridge, TN. If its level of radioactivity declines to 1/3 of the original value in 30 days, when will its level of radioactivity reach 1/100 of its original value? Note that this is an exponential decay problem.

\[
R(t) = R_0 e^{-\frac{\ln(3)}{30} t}
\]

\[
\frac{1}{3} R_0 = R_0 e^{-\frac{\ln(3)}{30} t}
\]

\[
\ln\left(\frac{1}{3}\right) = \frac{-\ln(3)}{30} t
\]

\[
t = 30 \frac{\ln(100)}{\ln(3)}
\]

8. (14 pts) Let \(f(x) = x^3 - 12x + 5 \) on the interval \([-5, 3]\). Find the absolute maximum and minimum of \(f(x) \) on this interval.

<table>
<thead>
<tr>
<th>Absolute max:</th>
<th>-21 at (x = -2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute min:</td>
<td>-60 at (x = -5)</td>
</tr>
</tbody>
</table>

\[
f'(-3) = -60
\]

\[
f(-2) = 21
\]

\[
f(2) = -11
\]

\[
f(3) = -4
\]

\[
f'(x) = 3x^2 - 12 = 3(x^2 - 4)
\]

\[
f'(x) = 0 \quad x = \pm 2
\]
9. (14 points) The graph of \(y = g(x) \) is given.

a. For which values of \(x \) is \(g(x) \) discontinuous? Don’t worry about the endpoints at -6 and 7 in either part a or part b.

b. For which values of \(x \) is \(g(x) \) not differentiable?

<table>
<thead>
<tr>
<th>Discontinuous</th>
<th>(x = -3), (y = -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not differentiable</td>
<td>(y = -3, y = -2, y = -1, x = 3, x = 5)</td>
</tr>
</tbody>
</table>

There is a vertical tangent at \(x = 3 \).
10. (14 pts) During the summer months, Terry makes and sells necklaces on the beach. Last summer, he sold the necklaces for $10 each and his sales averaged 20 per day. He also found that for each $1 increase in price sales drop by two per day. If the material for each necklace costs Terry $6, what should the selling price be to maximize his profit?

Price: $13

This is from 4.7, so there won't be a problem like this on the Spring 2009 exam.

\[
\begin{aligned}
\text{Revenue} & \quad \text{Cost} \\
P &= (10+x)(20-2x) - 6(20-2x) \\
 &= (4+x)(20-2x)
\end{aligned}
\]

\[
P'(x) = (4+x)(-2) + (1)(20-2x) = -8 - 2x + 20 - 2x = -4x
\]

\[
P'(x) = 0 \quad \text{when} \quad x = 3
\]

For \(x < 3 \), \(P'(x) > 0 \) and for \(x > 3 \), \(P'(x) < 0 \) so \(P(x) \) has max at \(x = 3 \)

Selling price should be $13
11. (15 points) An open cylindrical can (without top) is to be constructed to hold 16π cubic cm of liquid. The cost of the material for the bottom is 2 per cm2, and the cost of the material for the curved surface is 1 per cm2. Find the radius and the height of the least expensive can. (The area of the curved surface is the circumference of the circle times the height.)

\[
C = 2\pi r^2 + 2\pi rh
\]
\[
V = 16\pi = \pi r^2 h \Rightarrow h = \frac{16}{r^2}
\]

\[
C = 2\pi r^2 + 2\pi r\left(\frac{16}{r^2}\right) = 2\pi r^2 + 2\pi \left(\frac{16}{r}\right) = 2\pi \left[r^2 + \frac{16}{r}\right]
\]

\[
C' = 2\pi \left[2r - \frac{16}{r^2}\right]
\]

\[
C'(r) = 0 \text{ when } 2r = \frac{16}{r^2} \Rightarrow r^3 = 8 \Rightarrow r = 2
\]

So $r = 2$, $h = 4$
12. (15 points) Use linear approximation or differentials to find an approximate value for \(\sqrt{8.5} \).

Approx value: \[\frac{49}{24} \]

\[
\begin{align*}
\sqrt{8.5} & \approx \sqrt{8} + \frac{1}{2} (8)^{-\frac{1}{2}} (8.5 - 8) \\
& = 2 + \frac{1}{2} (\frac{1}{8}) (.5) \\
& = 2 + 0.0625 \\
& = \frac{49}{24}
\end{align*}
\]

13. (15 points) The altitude of a triangle is increasing at a rate of one ft/min while the area is increasing at a rate of 2 ft\(^2\)/min. At what rate is the base of the triangle changing when the altitude is 10 ft and the area is 100 ft\(^2\)?

Rate of change: \[-\frac{8}{5} \]
14. (15 points) Sketch the graph of the function \(f(x) = \frac{24}{x^3 + 8} \). For this function,

\[
f'(x) = \frac{-72x^2}{(x^3 + 8)^2} \quad \text{and} \quad f''(x) = \frac{288x(x^3 - 4)}{(x^3 + 8)^3}.
\]

<table>
<thead>
<tr>
<th>Horizontal asymptote(s):</th>
<th>(y = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical asymptote(s):</td>
<td>(x = -2)</td>
</tr>
<tr>
<td>Increasing:</td>
<td>Nowhere</td>
</tr>
<tr>
<td>Decreasing:</td>
<td>((-\infty, -2) \cup (-2, \infty))</td>
</tr>
<tr>
<td>Concave up:</td>
<td>((-2, 0) \cup (4^{1/3}, \infty))</td>
</tr>
<tr>
<td>Concave down:</td>
<td>((-\infty, -2) \cup (0, 4^{1/3}))</td>
</tr>
<tr>
<td>Relative max/min:</td>
<td>None</td>
</tr>
<tr>
<td>Inflections:</td>
<td>(x = 4^{1/3}, x = 0)</td>
</tr>
</tbody>
</table>

\[
\lim_{x \to \pm \infty} f(x) = 0
\]

\[
\begin{array}{c|c|c}
\hline
& \pm \infty & 0 \\
\hline
\pm \infty & \uparrow & \downarrow \\
0 & \downarrow & \uparrow \\
4^{1/3} & \uparrow & \downarrow \\
\hline
\end{array}
\]

\(x = -2 \) is a vertical asymptote so it can't be an inflection.