If $y=f(x)$, the differential $d y$ is $d y=f^{\prime}(x) d x$. Compare with $\Delta y=f(a+\Delta x)-f(a)$.
$f(a+\Delta x)=f(a)+\Delta y \approx f(a)+d y=f(a)+f^{\prime}(a) d x$
The Mean Value Theorem : If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there is a $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Asymptotes: The line $x=a$ is a vertical asymptote of the graph of a function f if $\lim _{x \rightarrow a^{+}} f(x)=$ ∞ or $-\infty$ or $\lim _{x \rightarrow a^{-}} f(x)=\infty$ or $-\infty$. In particular, if $f(x)=\frac{P(x)}{Q(x)}$ when P, Q are polynomial functions, then the line $x=a$ is a vertical asymptote of f if $Q(a)=0$ but $P(a) \neq 0$.

The line $y=b$ is an horizontal asymptote of the graph of a function f if $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow(-\infty)} f(x)=b$
A critical point of a function f is any point x in the domain of f such that $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.

For absolute extrema of a continuous function on a closed interval $[a, b]$:
Compare the value of the function for all the critical points in the interval (a, b) and for the two endpoints $x=a$ and $x=b$.

Local extremum tests:

First derivative test at a critical point c of f : if sign of f^{\prime} changes at c from - to + as x increases, then f has a local min at c; if sign of f^{\prime} changes from + to - , then f has a local max at c.
Second derivative test at a critical point c of $f:$ if $f^{\prime \prime}(c)>0$, then f is concave up at c and has a local min there; if $f^{\prime \prime}(c)<0$, then f is concave down at c and has a local max there.

If $(x, f(x))$ is an inflection point of a function f then x is in the domain of f and the concavity changes at $(x, f(x))$ (which requires either $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist).
Basic log and exp laws: $e^{\ln x}=x$ for $x>0 \quad \ln e^{x}=x$ for all real numbers x $\ln (m n)=\ln m+\ln n \quad \ln \frac{m}{n}=\ln m-\ln n \quad \ln \left(m^{n}\right)=n \ln m \quad \ln 1=0 \quad \ln e=1$

$$
e^{a} e^{b}=e^{(a+b)} \quad \frac{e^{a}}{e^{b}}=e^{(a-b)} \quad\left(e^{a}\right)^{b}=e^{(b a)} \quad 1=e^{0} \quad e=e^{1}
$$

Basic trig identities: $\quad \sin ^{2} \theta+\cos ^{2} \theta=1 \quad \sin (-x)=-\sin x \quad \cos (-x)=\cos x$
$\sin (2 \pi+x)=\sin x \quad \cos (2 \pi+x)=\cos x \quad 360$ degrees $=2 \pi$ radians $\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x}$

Basic differentiation rules plus chain rule (both forms) for trig, log, and exp functions:

$$
\begin{array}{rlrlrl}
\frac{d}{d x}(\sin x) & =\cos x & \frac{d}{d x}[\sin (f(x))] & =[\cos (f(x))] f^{\prime}(x) & \frac{d}{d x}(\sin u) & =(\cos u) \frac{d u}{d x} \\
\frac{d}{d x}(\cos x) & =-\sin x & \frac{d}{d x}[\cos (f(x))] & =-[\sin (f(x))] f^{\prime}(x) & \frac{d}{d x}(\cos u) & =-(\sin u) \frac{d u}{d x} \\
\frac{d}{d x}\left(e^{x}\right)=e^{x} & \frac{d}{d x}\left(e^{f(x)}\right) & =\left[e^{f(x)}\right] f^{\prime}(x) & \frac{d}{d x}\left(e^{u}\right)=e^{u} \frac{d u}{d x} \\
\frac{d}{d x}(\ln |x|)=\frac{1}{x} & (x \neq 0) & \frac{d}{d x}(\ln f(x)) & =\frac{f^{\prime}(x)}{f(x)}(f(x)>0) & \frac{d}{d x}(\ln |u|)=\frac{1}{u} \frac{d u}{d x}(u \neq 0) \\
\frac{d}{d x}(\tan x) & =\sec ^{2} x & \frac{d}{d x}[\tan (f(x))] & =\left[\sec ^{2}(f(x))\right] f^{\prime}(x) & \frac{d}{d x}(\tan u)=\left(\sec ^{2} u\right) \frac{d u}{d x}
\end{array}
$$

