Optimization. The relative extrema treated in previous sections are a technical invention. The chief reason for our interest in them is that they are easy to find. If you are going to invent a problem, you want to invent a problem that you can solve. It helps if it looks important, since that allows you to use your education to impress people.

Usually the real question is: "What is the largest that a certain quantity can be?" The quantity is often an estimate of a measurement based on some mathematical model. We have seen that these models are usually only valid on a limited domain, so this should be part of the analysis.

This leads to introducing the term absolute maximum of a function f on a domain D to represent a number M such that $f(x) \leq M$ for all $x \in D$ and $f(x)=M$ for some $x \in D$. This asks for a lot! It is possible that we have made so many requirements that they cannot be satisfied. For example, if D is the open interval $(0,1)$, then the function $f(x)=x$ satisfies $f(x)<1$ for all $x \in D$, but if $c<1$, there will be $x \in D$ with $f(x)>c$. Although there is a clear
(1) the endpoints of the interval D;
(2) any critical points of f in D.

Simple examples. One of the simplest functions if a linear function $f(x)=m x+b$. In this case, $f^{\prime}(x)=m$, so if $m \neq 0$, there are no critical points. Fortunately, we still have the two endpoints of D to consider, and one will give the minimum and the other will give the maximum.

Also consider $f(x)=4-(x+1)^{2}$ on all of \mathbb{R}. This isn't a closed interval, but clearly, the largest value is 4 and it is attained only when $x=-1$. If D were taken to be any closed interval containing -1 , then the maximum would be at -1 . Since $f^{\prime}(x)=-2(x+1)$, this is a critical point of f. (If D is a closed interval that doesn't contain $-1, f^{\prime}$ will not change sign on D, so the function will be either everywhere increasing or everywhere decreasing on D and the extreme values will be taken at the endpoints.

Fine points of the theory. If f is not differentiable at a finite number of points of D, these points divide D into a few smaller intervals for which the general the-
bound, the bound is not in the range of the function.
Fortunately, an absolute maximum can be shown to exist if f and D satisfy some reasonable conditions. The condition is that f be continuous and D be a closed interval.

Finding absolute maxima. Since the maximum is now an attained value of the function f, it is possible to modify the problem to one of finding a point x in the domain D such that $f(x)=M$.

While we are making reasonable assumptions, we can assume that f is not just continuous, but differentiable on D. The study of relative maxima and minima gave the following observation: if x is an interior point of D that is not a critical point, then $f(x)$ is not the largest (or the smallest) value of f on D.

Usually, this leaves only a finite number of points to be considered and assures us that the largest $f(x)$ in this finite set is the largest value of $f(x)$ is all of D.

The points that need to be considered are:
orem applies. This tells us that the absolute extrema of f are taken on at one of the critical points of f or at one of the endpoints of the subintervals into which the theory required us to break D. These endpoints of subintervals include only the endpoints of D and all points at which $f^{\prime}(x)$ does not exist.

