
Concavity. We have seen that a function being in-
creasing (more or less) corresponds to its derivative
being positive. Applying this tof ′(x) gives thatthe
derivative of a function is increasing when the sec-
ond derivative of the function is positive. The text-
bookdefinesthe phraseconcave upwardas the prop-
erty of having an increasing derivative, so it has the
theorem:

If f ′′(x) > 0 on an interval, thenf is concave upward
on that interval.

Applying these considerations to− f gives a prop-
erty calledconcave downwardthat corresponds to a
negative second derivative.

Some pictures are shown to suggest that this is a prop-
erty that can beseenin a graph.

You can easily produce your own pictures by noting
that for f (x) = x2, one hasf ′(x) = 2x and f ′′(x) =
2. The second derivative is everywhere positive in
this case.

Note that the changex → −x preservesconcavity
although itreversesthe property of being increasing
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or decreasing. The notation for second derivatives
hints at why this should be the case with the use of a
dx2 factor.

Inflection points. If f ′′(x) = 0 at a pointx = x0, we
cannot determine the concavity at that point. Iff (x) is
linear, then f ′′(x) = 0 everywhere. Otherwise, the
places wheref ′′(x) = 0 are likely to beisolated. If
we have some interval aroundx0 such thatf ′′(x) 6= 0
except atx0, then we can ask about the sign of the
second derivative at other points.

It turns out that derivatives always have theinterme-
diate value property, so f ′′(x) will have the same
sign at all points less thanx0 in our interval. Simi-
larly, it will have the same sign at all points greater
thanx0 in the interval.

If these two signs are the same, there is a consistent
concavity, andf can be said to have that concavity
throughout the interval.

Most of the time, if f ′′(x0) = 0, f ′′ will change sign
at x0. Such a point is called aninflection point.

Convexity. A figure S is said to beconvexif, when-
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ever two pointsp0 and p1 both belong toS, the en-
tire line segment joiningp0 and p1 is contained in
S. This simple characterization has powerful con-
sequences. One consequence is thatconvex figures
have tangents that stay on one side of the figure.

Not surprisingly, that terminology of concavity and
convexity are related. If a functionf is concave up-
ward on an intervalI , the portion of thexyplane with
x ∈ I andy > f (x) is a convex set.

This can be proved using theMean Value Theorem.
Supposex0 < x1 in an interval wheref ′′(x) ≥ 0.
The slope of thechord joining the points on the graph
of y = f (x) with these values ofx is equal to the
value of f ′ betweenx0 and x1. Thus, the slope of
the tangent atx = x0, the slope of the chord, and
the slope of the tangent atx = x1 are anincreasing
sequence. However, the height of the portion of a
line to the right of a point increases with the slope.
This shows thatf (x1) is greater than the point with
x = x1 on the tangent atx = x0. Since this is true
for all x1 in the interval, the curve is above the right
side of any tangent line. A similar argument shows
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the curve to be above the left side of every tangent
line. Putting these parts together, the curve is above
all tangent lines.

To show that chords lie above the curve, you show that
the slope of the chord is an increasing function when
the curve is concave upward. Theleading special
casehasx0 = 0 and f (x0) = 0, so that the slope of
the chord isf (x)/x. The derivative of this expression
is

x f ′(x)− f (x)

x2
= f ′(x)− f (x)

x

x
.

Forx > 0 both numerator and denominator of the last
expression are positive whenf is concave upward.

The second derivative test. For some reason calcu-
lus textbooks love this topic. They convince students
that second derivativesmust be computed in every
problem involving maxima or minima. This is fine
when the second derivative is easy to find. However, if
some effort will be required to find the derivative, one
should ask whether anything useful will be learned
before spending time on the calculation. In particu-
lar, the test is only meaningful if thecorrect second
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derivative is used. If you are going to make a mistake,
you shouldn’t do the work.

You probably won’t believe me, but I will claim that
you almostneverneed the second derivative test. The
proof of this claim is contained in the proof of the
second derivative test itself. When you see what the
test really tells you, you will see that you often know
that without doing the calculation.

Here is the test. Suppose thex = c is a critical point
of f , that is f ′(c) = 0. Suppose also thatf ′′(c) > 0.
Then f ′(x) is an increasing functionat x = c, and
hence on some intervalnear x = c. Since f ′ is
increasing andf ′(c) = 0, it must be the case on this
interval that f ′(x) < 0 for x < c and f ′(x) > 0 for
x > c. This says thatf is decreasing for smallerx
and increasing for largerx, which says thatf (x) ≥
f (c) for all x in the interval. Thus a positive second
derivative at a critical point says the the critical point
is a relative minimum. To remember this, recall the
the positive second derivative says that the curve will
be above the horizontal tangent at the critical point
(just like y = x2 at the origin). Inthe same way, one
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shows that a negative second derivative at a critical
point says that the critical point is a relative maximum.
If the second derivative is zero at the critical point, the
test isinconclusive.

At best, the test allows therelative or local properties
of a critical point to be identified without considera-
tion of anyglobal properties.
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