Section 6.2 Exercise 2 Find

$$
\int 4 x\left(2 x^{2}+1\right)^{7} d x
$$

Before solving this by finding a useful substitution, note that there is a straightforward (if slightly painful) solution that begins by expanding $4 x\left(2 x^{2}+1\right)^{7}$ to a polynomial of degree 15 (the polynomial is $\left.512 x^{1} 5+1792 x^{1} 3+2688 x^{1} 1+2240 x^{9}+1120 x^{7}+336 x^{5}+56 x^{3}+4 x\right)$ and integrating term-by-term to get a polynomial of degree 16 (which is $32 x^{1} 6+128 x^{1} 4+224 x^{1} 2+224 x^{1} 0+140 x^{8}+56 x^{6}+14 x^{4}+2 x^{2}$. Whatever method we use to find this integral, we must get something that differs from this only by a constant. In particular, the fact that the degree of the polynomial is 16 and a few other properties of the polynomial are easily seen without explicit expansion of the given integrand.

The method that you are supposed to use because you found the exercise in this section of the textbook is substitution. That is, we introduce

$$
u=2 x^{2}+1
$$

which leads by differentiation to

$$
d u=4 x d x
$$

These factors are found (exactly) in the original expression for the integral, so we have

$$
\begin{aligned}
\int u^{7} d u & =\frac{1}{8} u^{8}+C \\
\int 4 x\left(2 x^{2}+1\right)^{7} d x & =\frac{1}{8}\left(2 x^{2}+1\right)^{8}+C .
\end{aligned}
$$

Here, the last step consists of composing the expression of the integral in terms of u that we have found with the definition of u in terms of x that we recognized as the key to solving the problem.

Although we wrote $+C$ at the end of both solutions that we found, these are not the same C. The term-by-term method led to a polynomial without constant term, but $\left(2 x^{2}+1\right)^{8} / 8$ has constant term $1 / 8$. All other terms in the two polynomials are the same.

Exercise 6 Find

$$
\int \frac{3 x^{2}+2}{\left(x^{3}+2 x\right)^{2}} d x
$$

The substitution is

$$
\begin{aligned}
u & =x^{3}+2 x \\
d u & =\left(3 x^{2}+2\right) d x .
\end{aligned}
$$

Again, these expressions are found in the given integral, so we have

$$
\begin{aligned}
\int \frac{d u}{u^{2}} & =-\frac{1}{u}+C \\
\int \frac{3 x^{2}+2}{\left(x^{3}+2 x\right)^{2}} d x & =-\frac{1}{x^{3}+2 x}+C
\end{aligned}
$$

In finding this integral, it is helpful to write $1 / u^{2}$ as u^{-2} to emphasize that the power rule is used to find the integral.

Exercise 30 Find

$$
\int \frac{e^{-1 / x}}{x^{2}} d x
$$

One possible substitution is

$$
\begin{aligned}
u & =\frac{1}{x} \\
d u & =-\frac{1}{x^{2}} d x
\end{aligned}
$$

There is a natural factor of $-d u$ in the given integral, and identifying the substitution gives

$$
\begin{aligned}
& \int-e^{-u} d u=e^{-u}+C \\
& \int \frac{e^{-1 / x}}{x^{2}} d x=e^{-1 / x}+C
\end{aligned}
$$

Exercise 36 Find

$$
\int \frac{(\ln u)^{3}}{u} d u
$$

Using the substitution

$$
\begin{aligned}
v & =\ln u \\
d v & =\frac{1}{u} d u
\end{aligned}
$$

gives

$$
\begin{aligned}
\int v^{3} d v & =\frac{v^{4}}{4}+C \\
\int \frac{(\ln u)^{3}}{u} d u & =\frac{(\ln u)^{4}}{4}+C
\end{aligned}
$$

Exercise 44 Find

$$
\int \frac{e^{-u}-1}{e^{-u}+u} d u
$$

There was a hint to use the substitution

$$
\begin{aligned}
v & =e^{-u}+u \\
d v & =\left(-e^{-u}+1\right) d u
\end{aligned}
$$

This gives

$$
\begin{aligned}
\int \frac{-d v}{v} & =-\ln |v|+C \\
\int \frac{e^{-u}-1}{e^{-u}+u} d u & =-\ln \left|e^{-u}+u\right|+C
\end{aligned}
$$

Exercise 47 Find

$$
\int \frac{1-\sqrt{x}}{1+\sqrt{x}} d x
$$

In this case, one can substitute something for x instead of searching for a pattern. If

$$
\begin{aligned}
x & =y^{2} \\
d x & =2 y d y
\end{aligned}
$$

where we want $y \geq 0$ so that $y=\sqrt{x}$. Making this substitution gives

$$
\int \frac{1-y}{1+y} 2 y d y=\int \frac{2 y-2 y^{2}}{1+y} d y .
$$

Long division allows the integrand to be rewritten:

$$
\frac{2 y-2 y^{2}}{1+y}=-2 y+4-\frac{4}{1+y} .
$$

Integrating this gives

$$
-y^{2}+4 y-4 \ln |y+1|+C=-x+4 \sqrt{x}-4 \ln |\sqrt{x}+1|+C
$$

