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Elasticity of demand (3.4) Given a relation betweenprice p and inventory x, the
quantityE is defined by

E = − p

x

dx

dp
.

If E > 1, one saysdemand is elastic, which is supposed to be agood thing. It corresponds to a situation
in which adecrease in priceleads to anincrease in revenue. Questions often are phrased as: is demand
elastic?

Exercise 22 Given

x = −3

2
p+ 9

dx

dp
= −3

2

E =
3
2 p

9− 3
2 p

To test elasticity atp = 2. the expression givingE in terms ofp can be evaluated to getE = 1/2 at p = 2,
so demand isinelastic.

Note that an equation for ademand curvehas a reasonable interpretation in economics only wherep
andx are positive. Unfortunately, the nicest algebraic expression satisfy this only over a limit interval of
values. For this example,x is positive only forp < 6. This restriction should be included in any work with
this model. Under this assumption,E > 1 if and only if 3/2p > 9− 3/2p, which simplifies top > 3.

Furthermore, sinceR = px = p
(

9− 3/2p
) = 9p − 3/2p2, it can also be seen directly thatR is an

increasing function ofp (the inelastic case) ifp < 3 andR is a decreasing function ofp (the elastic case)
if p > 3.

Exercise 26 Given p = 144− x2, for which 0≤ x ≤ 12 should be assumed to have a meaningful
model, we can solve forx to getx = √144− p. Differentiating,dx/dp= (1/2)(144− p)−1/2(−1). Since
x is a synonym for

√
144− p, we could writedx/dp = −1/(2x), which will bedirectly available when

we have implicit differentiation (i.e., almost immediately).
Now, the given value ofp = 96 leads tox = √48 andE = 1, which is calledunitary demand, the

state separating the elastic and inelastic states.

Implicit differentiation (3.6) In response to a request for aformula for implicit differ-
entiation, if was noted that these problems are done by following amethod that is easily describedwithout
being expressed by a formula. Here is the description of that method:Given an equationcontainingx
and y, assumethat y is a function of x thatsatisfies the equation identically. Then,differentiate with
respect tox andsolvefor dy/dx. Of course, other variables may be used in place ofx andy.

Exercise 10 Given2x2+ y2 = 16, differentiate to obtain

4x + 2y
dy

dx
= 0.

Solve to obtain
dy

dx
= −2x

y
.
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That’s all there is to it! The expression fordy/dx depends on bothx andy. In this example, the curve is an
ellipse. This curve is symmetrical with respect to reflecting in the coordinate axes, but such reflections take
lines of slopem to lines of slope−m, and the formula fordy/dx clearly has this property.

Exercise 17 Givenx1/2+ y1/2 = 1, differentiate to obtain

1

2
x−1/2+ 1

2
y−1/2 dy

dx
= 0.

Solve to obtain
dy

dx
= −x−1/2

y−1/2
= − y1/2

x1/2
.

Exercise 19 Given
√

x + y+ x = 0, differentiate to obtain

1

2
(x + y)−1/2

(
1+ dy

dx

)
+ 1= 0.

Solving:

1+ dy

dx
= −2

√
x + y

dy

dx
= −1− 2

√
x + y

Since
√

x + y always means thepositive square root ofx + y, this equation represents the portion of the
curvex + y = x2 with x ≤ 0. Here is a sketch:
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In agreement with the fact that the expression obtained fordy/dx is always negative, this curve is seen
to give y as a decreasing function ofx.

An algebraic solution of given equation givesy = x2 − x, which is easily recognized as a parabola.
However, the portion of the curve withx > 0 is anextraneous solutionof the given equation. The ability
to solve fory shows that thedy/dx should be 2x − 1, and a glance at the given equation and the result of
implicit differentiation shows thatit is.
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Related rates (3.6) Work with this topic is similar to implicit differentiation in that an
identical relation between quantities is differentiated to get a new relation that includes the derivatives of
those quantities. A difference between these two types of problems is that, often in a Related Rates problem,
the independent variabledoes not appearin the relation.

Exercise 40 This exercise deals with two cars leaving an intersection, one heading West and one
heading North. All statements abouttime are given inseconds; all statements aboutdistanceare given in
feet; and in a great triumph of consistency, all statements aboutvelocity are given infeet per second. If
these units are used, then the values of these quantitiesmay be treated as numbers. Thent will be used for
time,x for the distance of the first car West of the intersection, andy for the distance of the second car North
of the intersection. The exercise asks about thestraight line distancebetween the cars, and we denote this
by z (also measured in feet). Pythagoras tells us that

x2+ y2 = z2,

so that the derivative of Pythagoras tells us that

2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
.

At the time described in the exercise (which ist = 4, although no explicit use will be made of this value)
we are given

x = 20 y = 28

dx

dt
= 9

dy

dt
= 11

First, use Pythagoras to getz2 = 202 + 282 = 1184, so thatz = √1184 = 4
√

74 at this value oft .
Then, put all the numerical values at this time into the derivative of Pythagoras to get8

√
74(dz/dt) =

2(20)(9)+ 2(28)(11) = 976. Solving,dz/dt = 122/
√

74≈ 14.1822.
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