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In the beginning ....

1865: Clausius invents ENTROPY in Thermodynamics

Rudolf Julius Emanuel Clausius
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Clausius was thinking BIG !

Clausius proposes two Fundamental Laws of the Universe:

1) The energy (E) of the world remains constant.

2) The entropy (S) of the world tends toward its maximum.
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Soon after ....

1872: Boltzmann’s ENTROPY formula in Kinetic Gas Theory

Ludwig Eduard Boltzmann
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Boltzmann’s H functional and ENTROPY for a GAS

Ho() = /R | fts.p.tyini(s. p.0)d s

Ss(f) = —Nks H(f)

/I\
ks introduced by Planck ~ 1900

Max Karl Ernst Ludwig Planck
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Boltzmann's ENTROPY for Thermal Equilibrium

In the 1860s/70s Boltzmann proposes that in THERMAL EQUILIBRIUM:

Ss(E, N, V|U) = kBIn/ / 5 (H— E) d®Np a®Ng
VNCRSN JRIN

2
He.a = S 20 S uig-q)

1<k<N 1<k<I<N
with
c2
U(r) = 7 (or such!)

the pair interaction energy.
REMARK: for Neon, Argon, Krypton, Xenon, Radon

ULs(r) = A(’Z—L2 — ’f—f) [Lennard-dones (1924)]
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The Boltzmann Maximum ENTROPY Principle

Boltzmann shows for the PERFECT GAS (U = 0) that:

1

where f is constrained by
f>0;

/ f(s, p)dp d’s
vCR3 JRS

/ . /RS o= |p|*f(s, v)dp d’ = e.
vC 3
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Planck’s formula for Boltzmann’s equiliorium ENTROPY

Max Planck later epitomizes Boltzmann’s entropy as:
S =klog W

Boltzmann’s Tomb Stone in Vienna
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Also around 1900 ...

Gibbs introduces his ensemble ENTROPY:

S:(F) =~k [ | F(@p.tinF@a.p.0d"pc"
q

Josiah Willard Gibbs
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The Gibbs Maximum ENTROPY Principle

Gibbs shows for “reasonable” U(# 0) that:

1
max Se(F) = = + ks In/ / e faT WP 3N, 3N,
F T R3N JR3N

here, F is constrained by
F > 0;

/ F(a,p)d*"p g =1,
R3N RSN

/RSN/RSN (9,p)H(q,p)d*"p d*Ng =
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Probability, Quantum Physics, and The Information Age ...

von Neumann’s quantum ENTROPY:

Sw(p) = —ks Tr(pInp)

Shannon’s Information ENTROPY:

Hs({p}) = = _ Pk logz px
k

Kullback-Leibler's DIVERGENCE (aka RELATIVE ENTROPY):

dP
D (P||Q) = /Xm e

N.B.: In the following, P is a probability measure,
while Q may be just a measure.
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THM: Let X = R2N and dQ = e H/NTTN_, K(qx)dqx, with K(q) a
Schwartz function, and

Ha)= > Inlg—aql.
1<k<I<N

Then

lim —mln/ n—dP min HB // s')In|s—s'|d%s d?s’
N—oo N f R2 xR2

where f is a probability density. Moreover, defining
f(s')In|s — §'|d%’ =:2u(s) + C
R2

then C can be chosen so that the maximizing f (viz. u) satisfies the
PRESCRIBED GAUSS CURVATURE EQUATION

—Au(s) = K(s)e?Yls)
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Onsager’s Vortex Ensembles and Differential Geometry

A question by Alice Chang (ca. 2000):

“Can you do this also for sign-changing Gauss curvatures?”
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Some Random Polynomials

Let z € C, let o > 0 be a variance, N € N, and define the integrals

( e_%xz
l/(x2+2‘2) X e iftN =1,
En(zio)=4 'R /em — X2
1 ~ (= ) xPTT(x2 & 221827 agx. |
e 2N X, +Z dxp it N > 1.
3T [106 + 29 Z—ax,

1<k<I<N 1<n<N
These are expected values of the polynomials

Py(z) = H1§n§N(Xr§ + z°)
whose 2N zeros {+iXx},_; , are generated by N identically

distributed multi-variate mean-zero normal random variables { X, }~_,
with co-variance , ,

Cov(Xi, Xi) = (1 + T )ok,s + T (1= k)
The E\(z; o) are polynomials in z2, explicitly computable for all N,

En(zi0) = jEIV;ZZj(?I) ZZ; (Nk_j) (22:2!! <02/\7 1 )k 0

When o = 1, then E\(z;1) = (1 + z2)Nforallz € Cand N € N.

Michael K.-H. Kiessling (Rutgers) Entropy with Signed and Complex Measures 14 /27



Some Random Polynomials

Multivariate Normal Level Surfaces: o > 1 (left) and 0 < o < 1 (right)
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Some Random Polynomials

5

I T T T ! T T 1
-2 -1 0 1 2

Ey(z0=05)"" forN=1,2,3,4,5.6,7.8,9.10, 11,12

L(z;6=05)
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Some Random Polynomials

20~

o) —
=

l-")\'
Efz6=2) vszforN=1,2,3,4,5,6,7,8,9,10,11, 12
—— L(z;6=2) vs.z
— 7 Analytic continuation ofL(:: c= 2) from|z] > 5 tolz] <5
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...
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Experimental Mathematics ...

Further reading:
Heuristic Relative Entropy Principles with Complex Measures:

Large-Degree Asymptotics of a Family of Multi-Variate Normal
Random Polynomials

J. Stat. Phys. 169:63—106 (2017).

THANK YOU FOR LISTENING!
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