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e The Graham-Pollak theorem:

e A tree with n vertices

o ! (shortest) path between any 2 vertices

e Distance matrix D = (djj)nxn Where
djj1s the length of the path from i to j

Thm (Graham-Pollak, 71)
dert o = a0 i

o (Graham-Lovasz, 78): det(D - x /)
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e Notation: let

Si={s1<sp << sk} and T =t <t <o <ty)

be sets of vertices,

then

P(S,T) = (ps, t, )i jelk]
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e Partial solution:

The exchange works if there is a common arrow,
the configurations cancel out

exchange

e Thm: det(P(S,T)) = »  sgn(Q) wt(Q)
§285 5+ 1
the sum being restricted to configurations () with no double arrows.

e T T T N ST T I TGS MR

e The arrows in the surviving configurations are either single TR TOATIE 051
or come in pairs of opposite.
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e Consider a single arrow in a configuration

In this subtree, | S|-17T1=1 In this subtree, | S|-1 T =-1

o The single arrows are determined by S and T

e N.B. [ISI-IT]l>1 would implies double arrows in all configurations




On the minors ... : Single arrows




On the minors ... : Single arrows

e Any configuration ) :S§ — T'contains the
forced (single) arrows

COmMmOoN arrows i <
f Q:5—>T WS T




On the minors ... : Single arrows

e Any configuration ) :S — T contains the
forced (single) arrows

COmMmMmon arrows i <
f (ORI EdiT ] :5->T

e Forced arrows can be connected to one
another to form minimal configurations
Qo o S [T T

(not necessarily unique)




On the minors ... : Single arrows

e Any configuration ) :S — T contains the
forced (single) arrows

COmMmMmon arrows i <
f (ORI EdiT ] :5->T

e Forced arrows can be connected to one
another to form minimal configurations
Qo o S [T T

(not necessarily unique)




On the minors ... : Single arrows

e Any configuration ) :S — T contains the
forced (single) arrows

common arrows

f Q:5—>T

e Forced arrows can be connected to one
another to form minimal configurations
Qo o S [T T

(not necessarily unique)




On the minors ... : When does |P[S,T]| # 0?




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS, 1] # 0:




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS,T] # 0:

e There must exist at least one minimal
configuration.




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS,T] # 0:

e There must exist at least one minimal
configuration.

No configuration Q : § = T exists

det(P[S,T]) = 0




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS,TD # 0:

e There must exist at least one minimal
configuration.

e The minimal configuration must be unique




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS,TD # 0:

e There must exist at least one minimal
configuration.

e The minimal configuration must be unique

Minimal configurations not unique




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS,TD # 0:

e There must exist at least one minimal
configuration.

e The minimal configuration must be unique

Minimal configurations not unique

Cancellation

~-




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS, 1] # 0:

e There must exist at least one minimal
configuration.

e The minimal configuration must be unique

e Sufficient conditions

We have:
det(P[S,T]) = £wt(£2g) + higher degree terms




On the minors ... : When does |P[S,T]| # 0?

e Necessary conditions for det(PLS, 1] # 0:

e There must exist at least one minimal
configuration.

e The minimal configuration must be unique

e Sufficient conditions

We have:
det(P[S,T]) = £wt(£2g) + higher degree terms

e Remark: If no two paths of a minimal
configuration have a common vertex, the
minimal configuration is unique
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Let S, T be such that the minimal configuration
(o is unique

Single arrows will be part of any configuration

Choose some set I of (other) arrows that will
appear with their opposite (F € ET — E(wo) ).

How many configurations have this weight?
Many configurations are possible.
Some with opposite signs. Cancellations?

Wanted:

e A sign-reversing involution s.t.
all survivors have the same sign
e A bijection on survivors allowing
their enumeration
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e The exchange does not produce
an allowed path

e Do it anyway! But create a new
source-target vertex for the illegal

path
e This change the associated i) &
permutation by a 3-cycle.

No sign change

e This is the bijection

0°@, 7, V)
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e 2. Vertex not on the minimal
configuration. Choose a leaf to
become the root

to the root

Take the incoming path from
the edge that leads to the root

This defines two opposite
arrows 3
Cancellations/bijection

to the root

e Record the edge that was
connected to edge leading to

the root 1 ﬂ @ @

e The last cut changes the

sign %

e All pairs of opposite are now
separated

One last cut ;z
to the root
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Thus given S, T

with an unique minimal configuration

How many surviving configurations
have weight:

What is the sign?

sgn(Qo) x (-1)°

#transposition = #F = §

#sign change = 1




On the minors ... : Enumeration




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S,T]) = (—1) wt(Qg) X > (=D)Flwt(F)wt(F)
FCET—E(Qo)

11

’UEV—V(Q()>

(1= dr(v))




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)% wt(Qg) X > ()FlweEwt(E) ] (- dr(v))

; FCE+—E(Qp) veEV -V (Qp)

/

sign-weight due to the
minimal configuration




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)% wt(Qg) X > (=D)Flwt(F)wt(F)
FCET—E(Qo)

11

’UEV—V(Q()>

(1= dr(v))

choose the pairs
of opposites




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)% wt(Qg) X > ()FlweEwt(E) ] (- dr(v))

FCE+—E(Qp) veEV -V (Qp)

due to the
transpositions




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)% wt(Qg) X > (=D)Flwt(F)wt(F)
FCET—E(Qo)
T

11

’UEV—V(Q()>

(1= dr(v))

don’t forget the
Opposite arrows




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)% wt(Qg) X > ()FlweEwt(E) ] (- dr(v))
FCE+—-E(Qo) veV -V (Qo)

7 /

for all vertex not on the
minimal configuration

record the choices
and change sign




On the minors ... : Enumeration




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S,T]) = (—1) wt(Qg) X > (=D)Flwt(F)wt(F)
FCET—E(Qo)

11

’UEV—V(Q()>

(1= dr(v))




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)%% wt(Qg) X > ()FlweEwt(E) ] (- dr(v))

FCE+—E(Qo) vEV -V (Qo)

e For instance: letS="T.
What is the coefficient of

(within some forest)

in det(P[S, T]) ?




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)%% wt(Qg) X > ()FlweEwt(E) ] (- dr(v))

FCE+—E(Qo) vEV -V (Qo)

e For instance: let S=1T .

Fl=14
What is the coefficient of £

j _4
(within some forest) #sign changes

in det(P[S, T]) ?




On the minors ... : Enumeration

e Main theorem: Let dr(v) be the degree of v in F. Then:

det(P[S, T]) = (—1)%% wt(Qg) X > ()FlweEwt(E) ] (- dr(v))

FCE+—E(Qo) vEV -V (Qo)

e For instance: let S=1T .

Fl=14
What is the coefficient of £

j _4
(within some forest) #sign changes

in det(P[S, T]) ?

(-D™(-2)-1)(-3)(-5) = 30
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det(P[S, T]) = (—1)%% wt(Q) X > ] @-dr()

FgE'I'—E(Qo) ’UEV—V(Q())

e IftS=T=V.

e Minimal configuration:

weight = 1, sign = +1

(Yan-Yeh 06)
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e Let.Jbe the all 1’s matrix and ¢ the number of trees in the forest. Then

det(P + xJ) | P| 4+ x (sum of the cofactors of P)

(1+cz)|P|+x (Z i ol 6)> P

1 — ee
ec k)

Bapat, Kirkland, Neumann (05): D instead of P
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e WhenS=T ...

det(P[U, U = Y (-D)Flwe(m)wt(F) ][ 1 -dp(v))

FCE+ veV -U

0 if e ¢ monomial,

monomial if e € monomial.

e For e€c ETUE™ | let 6.(monomial) = {

e For veV, let §, = Z e

ect—1(v)

det(P[U,U]) = || T - 6,) o |P|

velU
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e From multiplicative to additive weight:
multiplicative additive
wt(w) =ab---c wt(w)=a+b+---+c

matrix: D

wt(w)=(1+at)(1+0bt)---A+ct)=1+(a+b+---+c)t+ Ot

matrix: PT
P R B DL Ol )

t"] det(PT — J) = det(D)
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silltialetiianEE R RmNE- det(D + zJ) = (— 1)1 (

e = €: Bapat, Kirkland, Neumann (05)

det(D) = (—1)"1 (Z e‘jfe) (e +e)

eckE ecF

e = e: Bapat, Kirkland, Neumann

deniime=tES el (SN

Graham, Pollak (71)
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e g-analogue of the distance

60 /
1 ...h ql'l
‘/M

e multiplicative weight g on each arrow

0}
'/Q\/...'. q
9 q

Matrix: P

det(P_J)
q— 1
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e Generalization (Yan-Yeh, 06): arrows a,b,...,a,b,... have (multiplicative) weight

q“, q"

,...,qo_‘,qﬁ

wt(w) = ¢
Matrix: P

)" e+ 3 [LE]E]

€

Yan-Yeh (06)




