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Introduction

In this talk we will use the Wilf-Zeilberger (WZ)-method to prove
in an elementary way formulas like

∞∑
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(1)5n
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(74n2 + 27n + 3) =
48

π2
,

where (a)n = a(a + 1)(a + 2) · · · (a + n − 1).

The first one is a Ramanujan-type series due to Chan, Liaw and
Tan (2003), who proved it using elliptic modular functions.

All the known proofs of the second formula are based on WZ-pairs.
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The Pochhammer symbol

The rising or sifting factorial (Pochhammer symbol) is defined by

(a)x =
Γ(a + x)

Γ(a)
, (0)0 = 1.

If x is a positive integer, it reduces to

(a)n = a(a + 1)(a + 2) · · · (a + n − 1),

For a = 1, we have
(1)n = n!,

and we see that the rising factorial generalize the ordinary factorial.
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Ramanujan-type series for 1/π

The series for 1/π of the form

∞∑
n=0

(
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)
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(s)n(1− s)n

(1)3n
zn(a + bn) =

1

π
,

where s = 1/2, 1/4, 1/3, or 1/6 and z , a, b are algebraic numbers,
were discovered by S. Ramanujan, who gave 17 examples in 1914.

One of them is

∞∑
n=0

1

26n

(
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)3
n

(1)3n
(42n + 5) =

16

π
.

It gives approximately log 64 ' 1.8 digits of π per term.
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Other series by Ramanujan

The most impressive series discovered by Ramanujan are:

∞∑
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,

which give almost 6 and 8 digits per term respectively.

J. and P. Borwein were the first to prove the 17 Ramanujan series
by using the theory of elliptic modular functions and equations.
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Rational and irrational Ramanujan series

Ramanujan only gives the following example of irrational series:

∞∑
n=0
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(1)3n
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)8n [
(42
√
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√
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]

=
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π
.

The brothers D. and G. Chudnovsky proved the formula

∞∑
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(−1)n
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)
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)
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(
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)
n

(1)3n

545140134n + 13591409

426880
=

√
10005

π
,

which has the property of being the fastest possible rational series.
This is so because for this series we have

b2 = 163(1− z),

the greatest number for which Q(
√
−r) has unique factorization.
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Ramanujan-like series for 1/π2

Let s0 = 1/2 , s3 = 1− s1 , s4 = 1− s2 and

(s1, s2) =(1/2, 1/2), (1/2, 1/3), (1/2, 1/4), (1/2, 1/6), (1/3, 1/3),

(1/3, 1/4), (1/3, 1/6), (1/4, 1/4), (1/4, 1/6), (1/6, 1/6),

(1/5, 2/5), (1/8, 3/8), (1/10, 3/10), (1/12, 5/12).

We will call Ramanujan-like series for 1/π2 to the series which are
of the form

∞∑
n=0

zn

[
4∏

i=0

(si )n
(1)n

]
(a + bn + cn2) =

1

π2
,

where z , a, b and c are algebraic numbers. Observe that now we
have five rising factorials in the numerator instead of three.
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The PSLQ algorithm

Let (x1, . . . xn) be a vector of real numbers and write all the
numbers the xj with a precision of d decimal digits.

The PSLQ algorithm finds a vector (a1, . . . , an) of integers (with
aj 6= 0 for some j), such that:

a1x1 + · · ·+ anxn = 0, (with a precision of d digits),

and which has the smallest possible norm.

The PSLQ algorithm discovers identities but do not prove them.

Example: Let

f (j) =
∞∑
n=0

(
1
2

)5
n

(1)5n

(−1)n

2kn
nj , k = 1, 2, 3, . . .

and look for integer relations among f (0), f (1), f (2) and 1/π2.
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The formulas we found and proved

With PSLQ we discovered the formulas

∞∑
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.

I proved the three first formulas by the WZ-method in 2002 and
2003 and the last one in 2010.
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Conjectured formulas

By the PSLQ algorithm we discovered the formulas
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.

They remain unproved.
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More conjectured formulas

In 2010 we discovered three more series

∞∑
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)3n[
(32− 216

φ
)n2+(18− 162

φ
)n+(3− 30

φ
)

]
=

3

π2
,

where φ is the fifth power of the golden ratio. This formula is the
unique irrational example that I have found for 1/π2.

The second formula is joint with G. Almkvist.
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Formulas for 1/π3 and 1/π4

B. Gourevitch (2002) found with PSLQ the formula

∞∑
n=0

(
1
2

)7
n

(1)7n

1

26n
(168n3 + 76n2 + 14n + 1) =

32

π3
,

and Jim Cullen (2010) found with PSLQ the formula

∞∑
n=0

(
1
2

)7
n

(
1
4

)
n

(
3
4

)
n

(1)9n

1

212n
×

(43680n4 + 20632n3 + 4340n2 + 466n + 21) =
212

π4
.

Are they provable by the WZ-method?.
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The WZ-method

Let G (n, k) be hypergeometric in its two symbols. The proof of

∞∑
n=0

G (n, k) = Constant,

can be automatically (EKHAD) carried over by a computer.

H. Wilf and D. Zeilberger have discovered an algorithm that finds
a rational function C (n, k) called certificate, such that

F (n, k) = C (n, k)G (n, k), F (0, k) = 0,

G (n, k + 1)− G (n, k) = F (n + 1, k)− F (n, k) (WZ−pair).

Observe that if we sum for n ≥ 0 the right side telescopes. Then
apply Carlson’s theorem.
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Chains of WZ pairs

Let F (n, k) and G (n, k) be the two hypergeometric functions of a
WZ-pair, and suppose that in addition F (0, k) = 0. If we define

Fs,t(n, k) = F (sn, k + tn), s ∈ Z− {0}, t ∈ Z,

then Fs,t(n, k) and Gs,t(n, k) are also the functions of WZ-pairs
satisfying Fs,t(0, k) = 0 and in addition, we have

∞∑
n=0

Gs,t(n, k) =
∞∑
n=0

G (n, k) = Constant.

So we have a chain of formulas with the same sum.
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Bauer’s series

In 1859 Bauer proved the formula

∞∑
n=0

(−1)n
(
1
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)3
n

(1)3n
(4n + 1) =

2

π
.

Generalization and Zeilberger’s proof of Bauer’s series:

∞∑
n=0

(−1)n
(
1
2

)2
n

(
1
2 − k

)
n

(1 + k)n(1)2n
(4n + 1) =

2

π

(1)k(
1
2

)
k

.

Proof: The companion is

F (n, k) = (−1)n
(
1
2

)2
n

(
1
2 − k

)
n

(1 + k)n(1)2n

(
1
2

)
k

(1)k

n2

2n − 2k − 1
,

and we deduce the constant taking k = 1/2.
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Some remarks

Write with(SumTools[Hypergeometric]); in a Maple session,

and let H(n, k) = (−1)n
(
1
2

)2
n

(
1
2 − k

)
n

(1 + k)n(1)2n
. Then, writing

degree(Zeilberger(H(n,k),k,n,K)[1],K);

we see that the degree is 2 < 3 (candidate). Then, if we write

coK2:=coeff(Zeilberger(H(n,k)*(n+b*k+c),k,n,K)[1],K,2);

coes:=coeffs(coK2,k); solve({coes},{b,c});

we get the solution b = 0, c = 1/4. Then, writing

Zeilberger(H(n,k)*(4*n+1),k,n,K)[1];

we get the output (1 + 2k)K − (2 + 2k).
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WZ-proofs of series for 1/π

By the WZ-method, we get the identities:

∞∑
n=0

1

32n

(
1
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)
n

(
1
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k
2
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n

(
3
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k
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n
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2
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π

(
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3

)k (1)k(
1
2

)
k

.

F (n, k)→ F (n, k + n), leads to

∞∑
n=0

(−1)n

24n3n

(
1
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)
n

(
1
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2

)
n

(
3
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2

)
n

(
1
2 + k

)
n

(1)2n
(
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2

)
n

(
1
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2

)
n

× (28n + 3)(2n + 1) + 4k(9n + k + 2)

2n + k + 1
=
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√

3

3π
·
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4

3

)k (1)k(
1
2

)
k

.

We have determined the values of the constants by taking k = 1/2.
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More formulas in the chain

F (n, k)→ F (n, k + 2n) leads to
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(
1
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(
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n
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√

3

π
.

F (n, k)→ F (2n, k − 3n) leads to
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55n

26n35n
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=
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√

3

π
.
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WZ-proofs of Series for 1/π. Part 2

By the WZ-method, we get the identities:

∞∑
n=0
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8

)n
(
1
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)
n

(
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2

)2
n
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2
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1
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)
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(
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.

With the transformation F (n, k)→ F (n, k + n), we get

∞∑
n=0

(
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(
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)
n

(
1
2

)
n

(
1
6

)
n

(
5
6

)
n(

1
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2

)
n

(
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2

)
n

(1 + k)n(1)n

×(154n + 15)(2n + 1) + 4k(66n + 16k + 19)
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=
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√

2

π
·

(1)2k(
1
4

)
k

(
3
4

)
k

.

Here, we have determined the constants taking k → +∞. Observe
that (k)n ∼ kn.
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WZ-proofs of series for 1/π. Part 3

By the WZ-method, we get the identities:

∞∑
n=0
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)n
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(
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)
n

(
1
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)
n

(
2
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)
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1
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2

)
n

(
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2

)
n
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=
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√

3

π
·

(1)2k(
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4

)
k

(
3
4

)
k

.
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n=0

(
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16
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(
1
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)
n

(
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)
n

(
1
3 + k

)
n

(
2
3 + k

)
n(

1
2

)
n

(1)n(1 + k)n(1 + 3k)n

× (5n + 1)(2n + 1) + k(16n + 6k + 7)
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=

4
√

3

3π
· 4k ·

(1)2k(
1
6

)
k

(
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6
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.
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Binomial candidates

We consider the following expression:

H(n, k) =

(
−1

16

)n
(
1
2 + j1 k

)
n

(
1
2 + j2 k

)
n

(
1
3 + j3 k

)
n

(
2
3 + j3 k

)
n(

1 + j4
k
2

)
n

(
1
2 + j4

k
2

)
n

(1 + j5 k)n(1)n
,

For most of the values of j1, j2, j3, j4 and j5, we see (Maple):

with(SumTools[Hypergeometric]);

degree(Zeilberger(H(n,k),k,n,K)[1],K);

is equal to 4, but for j1 = 0, j2 = 2, j3 = j4 = j5 = 1, we see that

degree(Zeilberger(H(n,k),k,n,K)[1],K);

is equal to 3. Hence, this is candidate.
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PSLQ+WZ

With the candidate

H(n, k) =

(
−1

16

)n
(
1
2

)
n

(
1
2 + 2k

)
n

(
1
3 + k

)
n

(
2
3 + k

)
n(

1
2 + k

2

)
n

(
1 + k

2

)
n

(1 + k)n(1)n
,

we calculate the numerical values of

Ak =
∞∑
n=0

H(n, k)
(51n + 7)(2n + 1)

2n + k + 1
,

Bk = k
∞∑
n=0

H(n, k)
n

2n + k + 1
,

Ck = k
∞∑
n=0

H(n, k)
1

2n + k + 1
.

and of D = 12
√

3/π.
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PSLQ+WZ. Cont

We see that we have to find the constants a1, a2 and a3, such that

Ak + a1Bk + (a2k + a3)Ck + bDf (k) = 0.

We find them using PSLQ to look for integer relations among

Ak , Bk , Ck , D.

We get

3A1 + 342B1 + 219C1 − 16Df (1) = 0,

105A2 + 11970B2 + 11445C2 − 1024Df (2) = 0,

1155A3 + 131670B3 + 167475C3 − 16384Df (3) = 0.

The solution is a1 = 114, a2 = 36 and a3 = 37.
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Cont. The WZ-pair

The combinatorial part of the WZ-pair is

B(n, k) =

(
1
2

)
n

(
1
2 + 2k

)
n

(
1
3 + k

)
n

(
2
3 + k

)
n(

1
2 + k

2

)
n

(
1 + k

2

)
n

(1 + k)n(1)n
·
(
1
4

)
k

(
3
4

)
k

(1)2k
,

=

(
1
3 + n

)
k

(
2
3 + n

)
k

(
1
4 + n

2

)
k

(
3
4 + n

2

)
k(

1
3

)
k

(
2
3

)
k

(1 + n)k(1 + 2n)k
·
(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(1)3n
.

And the WZ-pair is

G (n, k) = B(n, k)

(
− 1

16

)n (51n + 7)(2n + 1) + k(114n + 36k + 37)

2n + k + 1
,

F (n, k) = B(n, k)

(
− 1

16

)n 9n(−6n2 − 30nk − 13n + 7k + 3)

(3k + 1)(3k + 2)
.

Observe how we guess the denominators of the rational parts.
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Another example

We have

∞∑
n=0

(
−1

4

)n
(
1
2

)
n

(
1
4

)
n

(
3
4 + k

)
n

(
1
4 − k

)
n

(1)2n(1 + k)n
(
1
4 + k

)
n

× (3 + 20n)(4n + 1) + 4k(12n + 1)

4n + 4k + 1
=

8

π

(
1
4

)
k

(1)k(
3
4

)
k

(
1
2

)
k

.

And

F (n, k) =

(
−1

4

)n
(
1
4

)
k

(
1
2

)
k

(
3
4 + n

)
k

(1 + n)k
(
3
4 − n

)
k

(
1
4 + n

)
k

·
(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(1)3n

× 64n2(4n − 1)

(4n − 4k − 3)(4n + 4k + 1)
.

Observe how we guess the denominators of the rational parts.
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From s = 1/2 to s = 1/4

We have not found a WZ-pair to prove the formula

∞∑
n=0

(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(1)3n
(−1)n

(
16

63

)2n

(65n + 8) =
9
√

7

π
,

but we can relate it to a formula proved by the WZ-method. Let

A(n, k) = 3

(
64

63

)k (−k)n
(
1
2

)2
n(

1
2 − k

)2
n

(1)n

(
1

64

)n

(42n + 5),

B(n, k) =
(−k)n

(−k
2

)
n

(
1
2 −

k
2

)
n(

1
2 − k

)2
n

(1)n
(−1)n

(
16

63

)2n

(130n − 2k + 15).

From a Whipple’s formula we can deduce that

∞∑
n=0

A(n, k) =
∞∑
n=0

B(n, k) ∀k ∈ C.
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Automatic proof

Let a(k) =
∞∑
n=0

A(n, k), b(k) =
∞∑
n=0

B(n, k).

We can prove that a(k) = b(k) automatically using Zeilberger:

with(SumTools[Hypergeometric]);

Zeilberger(A(n,k),k,n,K)[1];

Zeilberger(B(n,k),k,n,K)[1];

We see that a(k) and b(k) satisfy the same third order recurrent
equation, and due to (−k)n, we can directly check that

a(0) = b(0), a(1) = b(1), a(2) = b(2).

Hence a(k) = b(k) for all integers, which imply (Carlson’s Thm.)
that a(k) = b(k) ∀k ∈ C. Replacing k = −1/2 we are done.

Jesús Guillera Proofs of Ramanujan series by the WZ-method



From s = 1/2 to s = 1/6

Prove that:

∞∑
n=0

(
1
2

)
n

(
1
6

)
n

(
5
6

)
n

(1)3n

(
2

11

)3n

(126n + 10) =
11
√

33

2π
.

With

Zeilberger(f(n,k),k,n,K)[1];

we can automatically prove that

11

(
32

33

)3k ∞∑
n=0

(−3k)n
(
1
3 − k

)
n

(
1
6 − 2k

)
n(

2
3 − 2k

)
n

(
1
3 − 4k

)
n

(1)n

(
−1

8

)n

(6n + 1)

=
∞∑
n=0

(−k)n
(
1
3 − k

)
n

(
2
3 − k

)
n(

5
6 − k

)
n

(
2
3 − 2k

)
n

(1)n

(
2

11

)3n

(126n + 6k + 11).

Here take k = −1/6 and we are done.
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Complementary formulas. Part 1

D. Zeilberger wrote the Maple package twoFone, which found
automatically many nice formulas, like for example

∞∑
n=0

(
1
4 − k

)
n

(
1
4 − 3k

)
n

(1 + 2k)n(1)n
(9−4

√
5)n = C1

28k

52k(5 + 2
√

5)k

(1)k
(
1
2

)
k(

11
20

)
k

(
19
20

)
k

.

Multiplying (inside the series) for n + bk + c, we determine b and
c forcing the coefficient of K 2 to be 0. That is, writing

coK2:=coeff(Zeilberger(k,n,K)[1],K,2);

coes:=coeffs(coK2,k);

solve({coes},{b,c});

and we obtain the complementary formula
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Complentary formulas. Part 2

∞∑
n=0

(
1
4 − k

)
n

(
1
4 − 3k

)
n

(1 + 2k)n(1)n
(9− 4

√
5)n
[

40n + 20(
√

5− 1)k + 5−
√

5
]

= C2
28k

52k(5 + 2
√

5)k

(1)k
(
1
2

)
k(

3
20

)
k

(
7
20

)
k

, C1C2 =
2
√

10 + 5
√

5

π
.

Substituting k = 0, and multiplying both series, we obtain

∞∑
n=0

(
1
4

)2
n

(1)2n
(9− 4

√
5)n

∞∑
n=0

(
1
4

)2
n

(1)2n
(9− 4

√
5)n(40n + 5−

√
5) = C1C2.

Finally, using Clausen formula, the product transforms into

∞∑
n=0

(
1
2

)3
n

(1)3n
(9− 4

√
5)n(20n + 5−

√
5) =

2
√

10 + 5
√

5

π
.
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WZ-proofs of Ramanujan-like series for 1/π2 (1)

∞∑
n=0

1

24n

(
1
2

)3
n

(
1
4−

k
2

)
n

(
3
4−

k
2

)
n

(1)3n(1 + k)2n
(120n2+84kn+34n+10k+3)=

32

π2
(1)2k(
1
2

)2
k

.

For k = 0 we have

∞∑
n=0

1

24n

(
1
2

)3
n

(
1
4

)
n

(
3
4

)
n

(1)5n
(120n2 + 34n + 3) =

32

π2
,

and if we let k →∞, we recover the Ramanujan series

∞∑
n=0

1

26n

(
1
2

)3
n

(1)3n
(42n + 5) =

16

π
.

Observe that (k)n ∼ kn.
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WZ-proofs of Ramanujan-like series for 1/π2 (2)

∞∑
n=0

(−1)n

22n

(
1
2

)5
n

(1)n(1 + k)4n
(20n2+8n+1+24kn+8k2+4k) =

8

π2
(1)4k(
1
2

)4
k

.

For k = 0, we have

∞∑
n=0

(−1)n

22n

(
1
2

)5
n

(1)5n
(20n2 + 8n + 1) =

8

π2
.

With the transformation F (n, k)→ F (n, k + n), we get

∞∑
n=0

(
1
2

)5
n

(1)5n

(−1)n

210n
(820n2 + 180n + 13) =

128

π2
,

which gives 3 digits per term.
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WZ-proofs of Ramanujan-like series for 1/π2 (3)

We have

∞∑
n=0

(
1
2

)3
n

(
1
3 + k

3

)
n

(
2
3 + k

3

)
n

(
1 + k

3

)
n

(1)3n(1 + k)3n

(
3

4

)3n

× (74n2 + 27n + 3)n + k(108n2 + 42kn + 24n + 5k + 1)

n + k
3

=
48

π2
(1)2k(
1
2

)2
k

, (we get the constant taking the limit as k →∞).

Then, taking k = 0, we get

∞∑
n=0

(
1
2

)3
n

(
1
3

)
n

(
2
3

)
n

(1)5n

(
3

4

)3n

(74n2 + 27n + 3) =
48

π2
.

I proved this formula in (2010).
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WZ-proof of another formula by Ramanujan

In his first letter to Hardy, Ramanujan sent the following formula:

∞∑
n=0

(
1
2

)5
n

(1)5n
(−1)n(4n + 1) =

2

Γ4
(
3
4

) .
For B(n, k) =

(
1
2

)2
n

(
1
2 + k

)2
n

(
1
2 − k

)
n

(1)2n(1 + k)2n(1 + 2k)n
(−1)n, we get that

degree(Zeilberger(B(n,k),k,n,K)[1],K)

is equal to 4, so this binomial part is a candidate. We find:

∞∑
n=0

(
1
2

)2
n

(
1
2 + k

)2
n

(
1
2 − k

)
n

(1)2n(1 + k)2n(1 + 2k)n
(−1)n(4n+2k+1) =

2

Γ4
(
3
4

) (1)3k(
1
2

)
k

(
3
4

)2
k

,

which proves the Ramanujan series.
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A complementary formula

We have found the following related series

∞∑
n=0

(−1)n
(
1
2

)5
n

(1)5n
(4n + 1)(8n2 + 4n + 1) =

8 Γ4
(
3
4

)
π4

,

and the WZ-proof:

∞∑
n=0

(−1)n
(
1
2

)2
n

(
1
2 + k

)2
n

(
1
2 − k

)
n

(1)2n(1 + k)2n(1 + 2k)n

[
(4n + 1)(8n2 + 4n + 1)

+ k(24n2 + 8kn + 8n + 1)
]

=
8 Γ4

(
3
4

)
π4

(1)3k(
1
2

)
k

(
1
4

)2
k

.

Hence, we have

∞∑
n=0

(−1)n
(
1
2

)5
n

(1)5n
(4n+1) ·

∞∑
n=0

(−1)n
(
1
2

)5
n

(1)5n
(4n+1)(8n2 +4n+1) =

16

π4
.
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Supercongruences

W. Zudilin used the WZ-method to prove p-adic analogues for
some Ramanujan-type series for 1/π and 1/π2. For example:

p−1∑
n=0

(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(1)3n
(20n + 3)

(−1)n

22n
≡ 3(−1)

p−1
2 p (mod p3),

p−1∑
n=0

(
1
2

)3
n

(
1
4

)
n

(
3
4

)
n

(1)3n
(120n2 + 34n + 3)

1

24n
≡ 3p2 (mod p5),

where p is an odd prime. I have observed that there are also p-adic
analogues for the product of complementary series:

p−1∑
n=0

(−1)n
(
1
2

)5
n

(1)5n
(4n + 1) ·

p−1∑
n=0

(−1)n
(
1
2

)5
n

(1)5n
(4n + 1)(8n2 + 4n + 1)

≡ p4 (mod p6), where p is an odd prime.
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Curious repetitions of special values of z . Part 1

Observe that these three series have the same value of z :

∞∑
n=0

(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(1)3n

1

74n
(40n + 3) =

49
√

3

9π
,

proved with modular equations.

∞∑
n=0

(
1
8

)
n

(
3
8

)
n

(
5
8

)
n

(
7
8

)
n(

1
2

)
n

(1)3n

1

74n
1920n2 + 1072n + 55

2n + 1
=

196
√

7

3π
,

and

∞∑
n=0

(
1
2

)
n

(
1
8

)
n

(
3
8

)
n

(
5
8

)
n

(
7
8

)
n

(1)5n

1

74n
(1920n2 + 304n + 15) =

56
√

7

π2
,

unproved.
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Curious repetitions of special values of z . Part 2

Observe that these two unproved series have the same value of z :

∞∑
n=0

(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(
1
6

)
n

(
5
6

)
n

(1)5n

(
3

5

)6n

(532n2 + 126n + 9) =
375

π2
,

(joint with G. Almkvist), and

∞∑
n=0

(
1
3

)
n

(
2
3

)
n

(
1
6

)
n

(
5
6

)
n(

1
2

)
n

(1)3n

(
3

5

)6n 133n2 + 79n + 6

2n + 1
=

625

32π
,

which I found recently by using the PSLQ algorithm.
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Curious repetitions of special values of z . Part 3

Observe that these two series have the same value of z :

∞∑
n=0

(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(1)3n

(−1)n

48n
(28n + 3) =

16
√

3

3π
,

proved by the modular theory and also by the WZ-method, and

∞∑
n=0

(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(
1
4

)
n

(
3
4

)
n

(1)5n

(−1)n

48n
(252n2 + 63n + 5) =

48

π2
,

unproved.
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Curious repetitions of special values of z . Part 4

Observe that these two series have the same value of z :

∞∑
n=0

(
1
2

)
n

(
1
6

)
n

(
5
6

)
n

(1)3n

(−1)n

803n
(5418n + 263) =

640
√

15

3π
,

proved by the modular theory, and

∞∑
n=0

(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(
1
6

)
n

(
5
6

)
n

(1)5n

(−1)n

803n
(5418n2+693n+29) =

128
√

5

π2
,

unproved.
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Possible explanations

1 Similar WZ-pairs.

2 Cases k = 0 and limit as k → +∞ of the same formula.

3 Identities with a free parameter k.

4 Unknown transformations.
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Thank you
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