Building a Database for the Global Dynamics of

Multi-Parameter Systems

Konstantin Mischaikow

Dept. of Mathematics/BioMaPS Institute Rutgers <u>mischaik@math.rutgers.edu</u>

Z. Arai, Kyoto W. Kalies, Florida Atlantic Univ. H. Kokubu, Kyoto H. Oka, Ryukoku P. Pilarczyk Why do we want Databases of Global Dynamics?

Mathematical Answer: Interesting physical systems often involve many parameters and the dynamics is of fundamental importance. Normal form theory tells us what happens near singularities. Want similar information globally.

Scientific Answer: This is already being done but without the full perspective of dynamical systems.

von Dassow, et. al., Nature 2000, "The segment polarity network is a robust development module"

136 dimensional ode, 50 unknown parameters, phenomonological nonlinearities

240,000 randomly chosen points in parameter space More than 1,000,000 simulations

The General Framework

 $f: X \times \Lambda \to X$ continuous $(x, \lambda) \mapsto f(x, \lambda) = f_{\lambda}(x)$

X locally compact metric space (\mathbb{R}^n)

 $\Lambda \subset \mathbb{R}^m$

Goals for a Data-Base

We would like to be able to query to:

- Identify the structure of recurrent dynamics
- Identify gradient-like (non recurrent) dynamics
- Detect and identify bifurcations

Concepts are General

Evolution Equation:

$$\begin{array}{rcl} \varphi:[0,\infty)\times X&\to&X\\ u_t=F(u)&\varphi(0,u)&=&u\\ \varphi(t+s,u)&=&\varphi(t,\varphi(s,u))& f(u)&=&\varphi(\tau,u) \end{array}$$

Time Series Data:

$$u_0, u_1, u_2, u_3, \dots$$
 $x^i = (u_i, u_{i+1}, u_{i+2}) \in \mathbb{R}^3$ $f: X \to X$
 $x^i \mapsto x^{i+1}$

The Basic Problem

- Chaotic dynamics implies sensitivity with respect to initial conditions.
- Solution: Focus on invariant sets. $f_{\lambda}(S_{\lambda}) = S_{\lambda}$
- Bifurcation theory implies structural stability is not generic. Discussed in Stefano's opening lecture in CANDY08 workshop.
- Solution: Focus on isolating neighborhoods and isolated invariant sets.

 $S_{\lambda} = \operatorname{Inv}(N, f_{\lambda}) \subset \operatorname{int}(N)$

Implies moving beyond classical ideas of bifurcations and structural stability.

Form of the Data-Base

$f: \mathbb{R} \times [1, 4] \to \mathbb{R}$ $f_{\mu}(x) = f(x,\mu) = \mu \cdot x \cdot (1-x)$

Data in Data-Base

Directed Graph (gradient structure)

Algebraic Topology (recurrent structure)

$$f:X\times\Lambda\to X$$

Parameterized Dynamical System $F: X \times \Lambda \rightarrow X \times \Lambda$

$$F(x,\lambda) = (f_{\lambda}(x),\lambda) = (f(x,\lambda),\lambda)$$

Given $\Lambda_0 \subset \Lambda$ denote the restriction of *F* to $X \times \Lambda_0$ by

 $F_{\Lambda_0}: X \times \Lambda_0 \to X \times \Lambda_0$

Observe: $F = F_{\Lambda}$

 f_{λ} can be identified with $F_{\{\lambda\}}$.

A Simple Population Model

A density dependent Leslie model:

first year population $\begin{bmatrix} x \\ y \end{bmatrix}$ \mapsto $\begin{bmatrix} (\theta_1 x + \theta_2 y) e^{-c(\theta_1 x + \theta_2 y)} \\ (1 - \mu) x \end{bmatrix}$

Mathematically: $f : \mathbb{R}^2 \times \mathbb{R}^4 \to \mathbb{R}^2$ $f(x, \theta, \mu, c) = \frac{1}{c} f(cx, \theta, \mu, 1)$

To communicate the $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} (\theta_1 x + \theta_2 y) e^{-0.1(\theta_1 x + \theta_2 y)} \\ 0.7 \cdot x \end{bmatrix}$ pictures: $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$

$$\begin{aligned} f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \\ (x, y; \theta_1, \theta_2) \end{aligned}$$

$\begin{array}{c} f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \\ (x, y; \theta_1, \theta_2) \end{array} \left[\begin{array}{c} x \\ y \end{array} \right] \mapsto \left[\begin{array}{c} (\theta_1 x + \theta_2 y) e^{-0.1(x+y)} \\ 0.7x \end{array} \right]$

Parameterized Dynamical System

 $F: \mathbb{R}^2 \times [10, 50]^2 \to \mathbb{R}^2 \times [10, 50]^2$

A1: There exists a compact set $R \subset \mathbb{R}^n \times \Lambda$ which is an isolating neighborhood for *F*.

 $S := \operatorname{Inv}(R, F)$

Not true for Leslie model, but $f_{\theta}(R \setminus \{0\}) \subset int(R \setminus \{0\})$

where

 $R := \{ (x_1, x_2, \theta_1, \theta_2) \mid 0 \le x_1 \le \theta_1 + \theta_2, \ 0 \le x_2 \le 0.7(\theta_1 + \theta_2) \}$

Want to describe: S_{θ} $\theta \in [10, 50]^2$

Reasonable Questions for a Population Model

Global Dynamics:

Are there multiple basins of attraction?

How large are the basins of attraction?

Should we expect extinction?

Local Dynamics:

Are there equilibria and/or periodic orbits?

Is there chaotic dynamics?

Bifurcations:

Are there period doubling bifurcations?

Are there saddle node bifurcations?

Ugarcovici & Weiss, Nonlinearity '04

Limitations to Presentation:

A Review of Conley Theory

Morse Decompositions

Conley Index

A Morse decomposition of S_{Λ_0} is a finite collection of disjoint isolated invariant subsets of S_{Λ_0} , called Morse sets,

$\mathbf{M}(S_{\Lambda_0}) := \{ M_{\Lambda_0}(p) \subset S_{\Lambda_0} \mid p \in \mathcal{P}_{\Lambda_0} \},\$

for which there exists a strict partial order $>_{\Lambda_0}$, called an admissible order, on the indexing set \mathcal{P}_{Λ_0} such that for every $(x, \lambda) \in S_{\Lambda_0} \setminus \bigcup_{p \in \mathcal{P}} M_{\Lambda_0}(p)$ and any complete orbit γ of (x, λ) in S_{Λ_0} there exists indices $p >_{\Lambda_0} q$ such that under F_{Λ_0}

$\omega(\gamma) \subset M_{\Lambda_0}(q)$ and $\alpha(\gamma) \subset M_{\Lambda_0}(p)$

Since \mathcal{P}_{Λ_0} is a partially ordered set, a Morse decomposition can be represented as an acyclic directed graph $\mathcal{MG}(\Lambda_0)$ called the Morse graph.

Remarks about Morse Decompositions:

- All recurrent dynamics occurs within Morse sets.
- Morse Decompositions are not unique.
- The empty set can be a Morse set (Numerical artifacts).
- Given a Morse decomposition

 $\mathbf{M}(S_{\Lambda_0}) := \{ M_{\Lambda_0}(p) \subset S_{\Lambda_0} \mid p \in (\mathcal{P}_{\Lambda_0}, >_{\Lambda_0}) \}$

if $\Lambda_1 \subset \Lambda_0$ then

 $\{M_{\Lambda_1}(p) \subset S_{\Lambda_1} \mid p \in (\mathcal{P}_{\Lambda_0}, >_{\Lambda_0})\}$

is a Morse decomposition of S_{Λ_1} under F_{Λ_1} where

$$M_{\Lambda_1}(p) := M_{\Lambda_0}(p) \cap (X \times \Lambda_1)$$

Conley Index

Let $P = (P_1, P_0)$ with $P_0 \subset P_1$ be a pair of compact sets in $X \times \Lambda_0$. Define $F_{\Lambda_0, P} : P_1/P_0 \to P_1/P_0$ by

 $F_{\Lambda_0,P}(x) = \begin{cases} F_{\Lambda_0}(x,\lambda) & \text{if } (x,\lambda), F_{\Lambda_0}(x,\lambda) \in P_1 \setminus P_0 \\ [P_0] & \text{otherwise} \end{cases}$

 P_{1}/P_{0}

 $F_{\Lambda_0,P}$

P is an index pair for $F_{\Lambda_0,P}$ if

- $F_{\Lambda_0,P}$ is continuous.
- $cl(P_1 \setminus P_0)$ is an isolating neighborhood

Fact: If no iterate of $F_{\Lambda_0,P}$ is homotopic to the trivial map, then $\text{Inv}(\text{cl}(P_1 \setminus P_0), F_{\lambda_0}) \neq \emptyset$

 P_{1}/P_{0}

Corollary: If $F_{\Lambda_0,P*}: H_*(P_1/P_0, [P_0]) \to H_*(P_1/P_0, [P_0])$ is not nilpotent, then $\operatorname{Inv}(\operatorname{cl}(P_1 \setminus P_0), F_{\Lambda_0}) \neq \emptyset$.

The Conley index is the shift equivalence class of

 $F_{\Lambda_0,P*}: H_*(P_1/P_0, [P_0]) \to H_*(P_1/P_0, [P_0])$

Theorem: Let $S_{\Lambda_0} := \text{Inv}(\text{cl}(P_1 \setminus P_0), F_{\Lambda_0})$ If Λ_0 is simply connected then the Conley index of S_{Λ_0} and S_{λ} are equivalent for all $\lambda \in \Lambda_0$.

Computing the Dynamics

Choose a cubical grid Q that covers Λ .

Choose a cubical grid \mathcal{X} that covers X.

Construct a combinatorial multivalued map $\mathcal{F}_Q: \mathcal{X} \rightrightarrows \mathcal{X}$.

 θ_2

A multivalued map $\mathcal{F}_Q : \mathcal{X} \rightrightarrows \mathcal{X}$ is an outer approximation of $f : X \times Q \to X$ if $f(G,Q) \subset \operatorname{int}(|\mathcal{F}_Q(G)|) \quad \forall G \in \mathcal{X}$

Tuesday, April 1, 2008

 θ_1

Let $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ be an outer approximation for $f: X \times Q \to X$ Think of \mathcal{F} as a directed graph: Vertices $G \in \mathcal{X}$ Edges $G \to H$ if $H \in \mathcal{F}(G)$ The recurrent set for \mathcal{F} is $\mathcal{R}(\mathcal{F}) := \{G \in \mathcal{X} \mid \exists \text{ nontrivial path from } G \text{ to } G\}$ A Morse set of $\mathcal{R}(\mathcal{F})$ is an equivalence class: $G \sim H \iff$ There exists a path from Gto H and a path from H to G.

Fact: There exists an algorithm $O(|\mathcal{X}| + |\mathcal{F}|)$ that produces a function $\kappa : \mathcal{X} \to \mathbb{Z}$ such that $\forall H \in \mathcal{F}(G)$

- 1. $G \sim H \Rightarrow \kappa(G) = \kappa(H)$
- **2.** $G \not\sim H \Rightarrow \kappa(G) > \kappa(H)$

Corollary: There exists a partial ordering (acyclic directed graph) relating the Morse sets of \mathcal{F} .

We have a Morse Graph!

Prop: Let $\{\mathcal{M}_Q(p) \mid p \in (\mathcal{P}_Q, >_Q)\}$ be the Morse sets for \mathcal{F}_Q . Then $\mathbf{M}(S_Q) := \{M_Q(p) \mid p \in (\mathcal{P}_Q, >_Q)\}$ where $M_Q(p) := \operatorname{Inv}(|\mathcal{M}_Q(p)|, F_Q)$ is a Morse decomposition for S_Q .

The acyclic directed graph that represents the Morse sets for \mathcal{F}_Q define a Morse graph $\mathcal{MG}(\mathcal{F}_Q)$ for a Morse decomposition of S_Q

We have a Conley-Morse Graph!

Prop: $|\mathcal{M}_Q(p)|$ is an isolating block for F_Q .

Given an outer approximation \mathcal{F}_Q there exist algorithms for producing index pairs $P = (P_1, P_0)$ and computing

 $F_{\Lambda_0,P*}: H_*(P_1/P_0, [P_0]) \to H_*(P_1/P_0, [P_0])$

Reference: Computational Homology T. Kaczynski, K. M., M. Mrozek

Software: http://chomp.rutgers.edu/

Relating the Computations

Consider $Q_0, Q_1 \in \mathcal{Q}$ such that $Q_0 \cap Q_1 \neq \emptyset$.

How should we define $CMG(\mathcal{F}_{Q_0}) \cong CMG(\mathcal{F}_{Q_1})$?

We have the Morse sets for outer approximations:

 $\{\mathcal{M}_{Q_0}(p) \mid p \in (\mathcal{P}_{Q_0}, >_{Q_0})\} \quad \{\mathcal{M}_{Q_1}(q) \mid q \in (\mathcal{P}_{Q_1}, >_{Q_1})\}$

Construct relation ι_{Q_1,Q_0} with relations $p_i \rightarrow q_j$ if

 $\mathcal{M}_{Q_0}(p_i) \cap \mathcal{M}_{Q_1}(q_j) \neq \emptyset$

Defn: $CMG(\mathcal{F}_{Q_0})$ and $CMG(\mathcal{F}_{Q_1})$ are phenotypically equivalent if ι_{Q_1,Q_0} is a directed graph isomorphism.

Period Doubling Bifurcation $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Recall: *N* is an isolating neighborhood if $Inv(N, f) \subset int(N)$

Thus: If N is an isolating neighborhood for f_{λ_0} then N is an isolating neighborhood for f_{λ_1} .

Theorem: (Conley, Montgomery) The space of isolated invariant sets is a sheaf over Λ .

50

Remark 1: We have built a bundle fiber = Conley-Morse graph over each colored region in parameter space.

Remark 2: If these bundles are nontrivial, then there must be global bifurcations.

Let's Query the DataBase!

Multiple Basins of Attraction (Multiple minima in directed graph)

Probable Extinction

(Minimal element of graph contains a cube which intersects origin)

p = 0.6 p = 0.7 p = 0.8 p = 0.9

 $\Lambda = [0, 50] \times [0, 100]$

Thank-you for your attention

National Science Foundation

