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Why do we want Databases of Global Dynamics?

Mathematical Answer: Interesting physical
systems often involve many parameters and the
dynamics is of fundamental importance. Normal

form theory tells us what happens near
singularities. Want similar information globally.

Scientific Answer: This is already being done but
without the full perspective of dynamical systems.

von Dassow, et. al., Nature 2000, “The segment polarity network is a robust
development module”

136 dimensional ode, 50 unknown parameters, phenomonological
nonlinearities

240,000 randomly chosen points in parameter space
More than 1,000,000 simulations
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The General Framework

f: X xA— X contihnuous

(2, A) = f(z,A) = fa(z)

X locally compact metric space (R")
A CR™

(Goals for a Data-Base
We would like to be able to query to:

e |dentify the structure of recurrent dynamics

* |dentify gradient-like (non recurrent)
dynamics

e Detect and identify bifurcations
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Concepts are General

Evolution Equation:
p:l0,0)x X — X
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Time Series Data:
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Ug, Ut, U2, US, - - . r' = (uj, Ujr1,Ua9) € R
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The Basic Problem

o Chaotic dynamics implies sensitivity with
respect to initial conditions.

e Solution: Focus on invariant sets. /x(Sx) = S

e Bifurcation theory implies structural
stability is not generic. Discussed in
Stefano’s opening lecture in CANDYOS8

workshop.

e Solution: Focus on isolating neighborhoods and
isolated invariant sets.

SRNm==m] (1A wh ey NRGH N A1 (WA A

Implies moving beyond classical ideas of
bifurcations and structural stability.
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Form of the Data-Base

1.0
05 - LM V| Example: The Logistic Ma
05 i FLE f:Rx|[1,4 —R
" Faleh =fle = ==
0.2 -
0.0 ] | | | | | | | | | | | | | |
24 2.6 .8 3.0 3.#2L 34 3.6 3.8 4.0
Data in Data-Base
unstable
stable gradient-like Directed Graph
equilibrium SHaics (gradient structure)
stable
period 2
- Algebraic Topology
1l <p<3 > < pu <1+ V6 (recurrent structure)
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Some Notation

A N X

Parameterized Dynamical System F: X xA — X x A
F(z,A) = (fa(z), A) = (f(z,A), A)
Given Ay C A denote the restriction of Fto X x Ay by
Fpa, : X X Ag — X X Ay

Observe: F = F)
fx can be identified with Fy,.
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A Simple Population Model

A density dependent Leslie model:

first year population o " (012 + Ogy)e—c(Ora+02y)
second year population | y _ (1 — p)x

Mathematically: f:R? x R* — R?
1
f(:I:, 97“7 C) 17 Ef(cx7 97“7 ]')

To communicate the [ z | [ (61 + fay)e 01 (Orotb20) -
ideas | want to show | y | O
pictures:

f:R? x R? - R?
(xay;91792)
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f:R*xR* - R’
($7y;6)176)2)

iise
Y

(012 + Goy)e O HEtY)

0.7x

Parameterized Dynamical System

F : R? x [10,50]° — R* x [10, 50]*

Al: There exists a compact set RCc R" x A
which is an isolating neighborhood for F.

where

b=l R
Not true for Leslie model, but fo(R\ {0}) C int(R \ {O})

== {($1,$2,(91,(92) ‘ 0< 2z <0, + 927 0 <z < 07(91 i 92)}

Want to describe:

9 € [10,50]°
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Reasonable Questions for a Population Model

Global Dynamics:
Are there multiple basins of attraction?

How large are the basins of attraction?
Should we expect extinction?

Local Dynamics:

Are there equilibria and/or periodic orbits?
Is there chaotic dynamics?

Bifurcations:

Are there period doubling bifurcations?
Are there saddle node bifurcations?

Tuesday, April 1,2008
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Ugarcovici & Weiss,
Nonlinearity ‘04

Limitations to Presentation:

Single
parameter

Only see the
attractors

Can’t easily
probe or
extend the
results

Tuesday, April 1,2008

11



A Review of Conley Theory

Morse Decompositions

Conley Index
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A Morse decomposition of Sy, is a finite collection

of disjoint isolated invariant subsets of S\, called
Morse sets,

M(SAO) - {MAO (p) S SAO | prs PAo}v

for which there exists a strict partial order >4,
called an admissible order, on the indexing set Py,
such that for every (z,)) € Sa, \ UpepMa, (p)

and any complete orbity of (x, A) in S, there exists
indices p >4, ¢ such that under Fy,

w(y) C Ma,(g) and aly) C Ma,(p)

Since Py, is a partially ordered set, a Morse
decomposition can be represented as an °

acyclic directed graph MG(Ag) called the N
Morse graph.

OO0 0-9
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Remarks about Morse Decompositions:

All recurrent dynamics occurs within Morse gets.
Morse Decompositions are not unique. g ¢

The empty set can be a Morse set (Numerk‘i O
artifacts).

Given a Morse decomposition

M(SAO) = {MAO (p) s SAO lp = (PA(N >A0)}
if A C A then
{MAl (p) (2: SAl ‘p = (PAW >Ao)}

is a Morse decomposition of Sy, under Fy where

M, (p) = My, (p) a (X X Al)

Tuesday, April 1,2008
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Conley Index

Let P = (P, Py) with Py c P, be a pair of compact sets

InX x Ap.
: DEﬁﬂEFAO,plpl/Poﬁpl/PQ by

‘FAO(:I; e i o R
axima 'Z:D\() ( ) e <
mv:ue';an’r OtherWISG
FA07
P is an index pair for Fi, pl. .

Py /Py Py /Py
° FAoyp IS continuous.

e cl(P1\F) is an isolating neighborhood

Fact: If no iterate of Fj, p iSs homotopic to .
the trivial map, then Inv(cl(P; \ Fo), Fh,) # 0 P/Fy
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COrO”ary: | FAO,P* : H*(Pl/P(), [PO]) — H*(Pl/P(), [P()])
is not nilpotent, then Inv(cl(P \ Fy), Fa,) # 0.

The Conley index is the shift equivalence class of

FAO,P* : H*(Pl/P07 [PO]) =7 H*(Pl/POa [PO])

Theorem: Let Sx, :=Inv(cl(P \ Fy), Fa,)
If Agis simply connected then the Conley index of Sj,
and S, are equivalent for all A € Ay.

Tuesday, April 1,2008 16



: : /
Computing the Dynamics

Choose a cubical grid @ that covers A.

Choose a cubical grid X that covers X.

Construct a combinatorial multivalued map Fg : X =2 X.
G — fQ(G) C X

/fQ(G)

H Error
bound

on f(G, Q).

A multivalued mapFg : X 3 X is an outer

approximation of f: X x@Q — X if
f(G,Q) Cint (|Fo(G)]) VG eX

Tuesday, April 1,2008
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Let F : X = Xbe an outer approximation for f: X xQ — X

Think of Fas a directed graph: Vertices G e X

_ Edges -G =
The recurrent set for F is

R(F) :={G € X | 3 nontrivial path from G to G}

A Morse set of R(F) is an equivalence class:
There exists a path from G

GreH = | voHand a path fromH toG.
Fact: There exists an algorithm O(|X| 4+ |F|)that ?
produces a function k : X — Z such that YV H € F(G) ?
INEEE RPN S SRER=SEANY A AUNE=SDTE S A ®
v
P G (G s ) ‘\O
v
® O

Corollary: There exists a partial ordering (acyclic directed graph)
relating the Morse sets of F

Tuesday, April 1,2008
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We have a Morse Graph!

Prop: Let {Mqg(p) | p € (Pg,>¢)} be the Morse sets
for Fo. Then M(Sq) := {Mq(p) | p € (Pq,>q)}
where Mq(p) := Inv(|[Mg(p)|, Fg) is a Morse
decomposition for Sp.

The acyclic directed graph that represents the
Morse sets for Fg define a Morse graph MG(Fg)

for a Morse decomposition of Sg

19
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Y Cube Q) centered at (6h,02) = (22.5,25)

The Recurrent
Sets

Attracting
Neighborhoods

'\ Contains

/ : Invariant sets

. . ——
Non-trivial

Morse
Graph

S
Minimal
Morse
Sets
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We have a Conley-Morse Graph!

Prop: |[Mg(p)|is an isolating block for Fg.

Given an outer approximation Fnthere exist
algorithms for producing index pairs P = (P, Fp)
and computing

a5 B Y A T o

Reference: Computational Homology
T. Kaczynski, K. M., M. Mrozek

Software: http://chomp.rutgers.edu/

Tuesday, April 1,2008
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2:1

Conley Mt

#l=1

Morse
0 0 -1 Graph
-1 0 0 -
0 1 0

Contains
a period {1,—0.54 0.8664}
3 orbit X‘o

H0.0.2) Ny
1] :Z — 7« Mol QAQ
Not Nilpotent
Contains {1} 6: 94769

3: 183
H=(0,72"3,0)
Map 1:
#1=-2
#2=3

/
-O-0-0-0

/

7: 16854

. . ER=3(Zi03 520250
H=(Z,Z"2,0) _
© a fixed point &z N
#1=1 B
#2=1
Map 1:
#2=2 #3=2
Mapl =0

0
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Relating the Computations

Consider Qg, Q1 € Q such that Qo N Q1 # 0.
How should we define CMG(Fg,) =2 CMG(Fg,)?

We have the Morse sets for outer approximations:
{Mqo(P) [P € (Pqo:>q0)t  {Mai(@) | g€ (Pg,,>q.)}

Construct relation tg, g, With relations p; — g;if

Mq,(pi) " Mg, (q;) # 0

Defn: CMG(Fg,)andCMG(Fg,) are phenotypically
equivalent if ¢g, g, is a directed graph isomorphism.

Tuesday, April 1,2008 23



An Example
Period Doubling Bifurcation f:RxR — R

-

Fo1:2 — Z
1l — -1

unstable

equilibrium

1
L

stable
equilibrium

stable

oy

period 2
orbit

S,

"y
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Recall: N is an isolating neighborhood if Inv(N, f) C int(N)

Thus: If Nis an isolating neighborhood for f», then N is an
isolating neighborhood for f,.

Theorem: (Conley, Montgomery) The space of isolated
invariant sets is a sheaf overA.

Remark 1: We have built a bundle
fiber = Conley-Morse graph
over each colored region in parameter space.

Remark 2: If these bundles are nontrivial, then
there must be global bifurcations.
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Let’s Query the DataBase!




(Multiple minima in directed graph)

Multiple Basins ot Attraction
0

1%)1

N
N

D
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(Minimal element of graph contains a cube which intersects origin)

OV grseassesases

10

Probable Extinction

Not the
origin

A
p—t
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Possible Stable Period 3 Orbit

(Minimal element of graph with index{ll/S})
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siisstidticiibs Period Doubling Bifurcation
guw[e Conley

to Morse
Dynamics  Graph

Equilibrium
2—-d unstable
manifold

with flip

Equilibrium
1-d unstable
manifold
with flip

Stable Period
2 orbit
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Interpretive
Guide
to
Dynamics
Equilibrium
2—-d unstable
manifold
with flip

Equilibrium
1-d unstable
manifold
with flip

Stable Period
2 orbit

Conley
Morse
Graph
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Interpretive
Guide
to
Dynamics

Equilibrium
2—-d unstable
manifold

Equilibrium
stable

Conley Morse Graph

Iil(; AN NSNS EYEEEEE llll@l;lllllllllllllllllllllllllllll5l
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Possible

Doubling
Bifurcation

Period
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Possible
Saddle-Node

‘ Bifurcation

——

",
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Thank-you for your attention

National Science Foundation

Tuesday, April 1,2008



