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Why do we want Databases of Global Dynamics?

Mathematical Answer:  Interesting physical 
systems often involve many parameters and the 
dynamics is of fundamental importance. Normal 
form theory tells us what happens near 
singularities. Want similar information globally.

Scientific Answer:  This is already being done but 
without the full perspective of dynamical systems.

von Dassow, et. al., Nature 2000, “The segment polarity network is a robust 
development module”

136 dimensional ode, 50 unknown parameters, phenomonological 
nonlinearities

240,000 randomly chosen points in parameter space
More than 1,000,000 simulations
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The General Framework

Goals for a Data-Base
We would like to be able to query to:

Identify gradient-like (non recurrent) 
dynamics

Identify the structure of recurrent dynamics

Detect and identify bifurcations

f : X × Λ→ X

X locally compact metric space (    ) Rn

Λ ⊂ Rm

continuous
(x,λ) !→ f(x,λ) = fλ(x)
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ϕ : [0,∞)×X → X

ϕ(0, u) = u

ϕ(t + s, u) = ϕ(t, ϕ(s, u))
ut = F (u)

Evolution Equation:

f : X → X

f(u) = ϕ(τ, u)

Time Series Data:

u0, u1, u2, u3, . . . xi = (ui, ui+1, ui+2) ∈ R3

Concepts are General

f : X → X

xi "→ xi+1
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Solution: Focus on isolating neighborhoods and 
isolated invariant sets.

Sλ = Inv(N, fλ) ⊂ int(N)

The Basic Problem
Chaotic dynamics implies sensitivity with 
respect to initial conditions.

Solution: Focus on invariant sets. fλ(Sλ) = Sλ

Bifurcation theory implies structural 
stability is not generic. Discussed in 
Stefano’s opening lecture in CANDY08 
workshop.

Implies moving beyond classical ideas of 
bifurcations and structural stability.
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Form of the Data-Base

Data in Data-Base

Directed Graph
(gradient structure)

Algebraic Topology
(recurrent structure)

µ

stable
equilibrium

1 < µ < 3

unstable
equilibrium

stable
period 2

orbit

3 < µ < 1 +
√

6

gradient-like
dynamics

f : R× [1, 4]→ R

Example:  The Logistic Map

fµ(x) = f(x, µ) = µ · x · (1− x)
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Some Notation

Parameterized Dynamical System F : X × Λ→ X × Λ

F (x,λ) = (fλ(x),λ) = (f(x,λ),λ)

Λ0 ⊂ ΛGiven           denote the restriction of    to           by X × Λ0F

FΛ0 : X × Λ0 → X × Λ0

Observe: F = FΛ

   can be identified with      .F{λ}fλ

f : X × Λ→ X
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A Simple Population Model

f(x, θ, µ, c) =
1
c
f(cx, θ, µ, 1)

A density dependent Leslie model:

first year population
second year population

f : R2 × R4 → R2Mathematically:

[
x
y

]
!→

[
(θ1x + θ2y)e−c(θ1x+θ2y)

(1− µ)x

]

To communicate the 
ideas I want to show 
pictures:

(x, y; θ1, θ2)
f : R2 × R2 → R2

[
x
y

]
!→

[
(θ1x + θ2y)e−0.1(θ1x+θ2y)

0.7 · x

]

8Tuesday, April 1, 2008



(x, y; θ1, θ2)
f : R2 × R2 → R2 [

x
y

]
!→

[
(θ1x + θ2y)e−0.1(x+y)

0.7x

]

Parameterized Dynamical System

F : R2 × [10, 50]2 → R2 × [10, 50]2

A1: There exists a compact set   
which is an isolating neighborhood for  . 

R ⊂ Rn × Λ
F

S := Inv(R,F )
Not true for Leslie model, but

R := {(x1, x2, θ1, θ2) | 0 ≤ x1 ≤ θ1 + θ2, 0 ≤ x2 ≤ 0.7(θ1 + θ2)}

fθ(R \ {0}) ⊂ int(R \ {0})
where

Want to describe: θ ∈ [10, 50]2Sθ
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Reasonable Questions for a Population Model
Global Dynamics:

Are there multiple basins of attraction?

Should we expect extinction?
Local Dynamics:

Are there equilibria and/or periodic orbits?
Is there chaotic dynamics? 

Bifurcations:
Are there period doubling bifurcations?
Are there saddle node bifurcations?

How large are the basins of attraction?
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Single 
parameter

Limitations to Presentation:

Only see the
attractors

Can’t easily 
probe or 
extend the 
results

θ1

x + y

[

x
y

]

!→

[

(θ1x + θ2y)e−0.1(x+y)

0.7x

] Ugarcovici & Weiss, 
Nonlinearity ‘04

10 ≤ θi ≤ 50 θ1 = θ2
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A Review of Conley Theory

Morse Decompositions

Conley Index
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A Morse decomposition of      is a finite collection 
of disjoint isolated invariant subsets of     , called 
Morse sets,

SΛ0

SΛ0

M(SΛ0) := {MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0} ,

for which there exists a strict partial order      ,
called an admissible order, on the indexing set
such that for every
and any complete orbit   of        in      there exists
indices             such that under    

(x,λ) ∈ SΛ0 \ ∪p∈PMΛ0(p)
γ (x,λ) SΛ0

p >Λ0 q FΛ0

ω(γ) ⊂MΛ0(q) α(γ) ⊂MΛ0(p)

>Λ0

PΛ0

and
Since      is a partially ordered set, a Morse 
decomposition can be represented as an 
acyclic directed graph             called the 
Morse graph. 

PΛ0

MG(Λ0)
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Remarks about Morse Decompositions:

The empty set can be a Morse set (Numerical 
artifacts).

All recurrent dynamics occurs within Morse sets.

Given a Morse decomposition
M(SΛ0) := {MΛ0(p) ⊂ SΛ0 | p ∈ (PΛ0 , >Λ0)}

if             thenΛ1 ⊂ Λ0

{MΛ1(p) ⊂ SΛ1 | p ∈ (PΛ0 , >Λ0)}

is a Morse decomposition of      under     where

MΛ1(p) := MΛ0(p) ∩ (X × Λ1)

SΛ1 FΛ1

Morse Decompositions are not unique.
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Conley Index

P1

P0

Let                   with             be a pair of compact sets 
in           . 

P = (P1, P0) P0 ⊂ P1

X × Λ0

P1/P0

byDefine

P1/P0

FΛ0,P : P1/P0 → P1/P0

FΛ0,P (x) =

{
FΛ0(x,λ) if (x,λ), FΛ0(x,λ) ∈ P1 \ P0

[P0] otherwise

FΛ0,P

maximal
invariant

set

is continuous.
   is an index pair for         if

is an isolating neighborhoodcl(P1 \ P0)

FΛ0,PP

FΛ0,P

Fact:  If no iterate of         is homotopic to 
the trivial map, then

g

P1/P0

FΛ0,P

Inv(cl(P1 \ P0), Fλ0) != ∅
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Corollary:  If
is not nilpotent, then

FΛ0,P∗ : H∗(P1/P0, [P0])→ H∗(P1/P0, [P0])

Inv(cl(P1 \ P0), FΛ0) != ∅.

The Conley index is the shift equivalence class of

FΛ0,P∗ : H∗(P1/P0, [P0])→ H∗(P1/P0, [P0])

Theorem:  Let     
If     is simply connected then the Conley index of    
and     are equivalent for all          .

SΛ0 := Inv(cl(P1 \ P0), FΛ0)
Λ0 SΛ0

λ ∈ Λ0Sλ
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FQ(G)

Error 
bound
on           .f(G, Q)

Computing the Dynamics
Q

Choose a cubical grid     that covers   .Q Λ

θ1

θ2

G

FQ : X −→→XConstruct a combinatorial multivalued map                 .
G !→ FQ(G) ⊂ X

f(G, Q)

Choose a cubical grid     that covers   .X X

y

xA multivalued map                  is an outer 
approximation of                        if

FQ : X −→→X
f : X ×Q→ X

f(G, Q) ⊂ int (|FQ(G)|) ∀G ∈ X
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F : X −→→X

FThink of    as a directed graph:

The recurrent set for     isF

R(F) := {G ∈ X | ∃ nontrivial path from G to G}

A Morse set of          is an equivalence class:R(F)

G ∼ H
There exists a path from
to    and a path from    to   .

G

GH H
⇔

G ∈ XVertices
Edges               if H ∈ F(G)G→ H

Fact:  There exists an algorithm                   that
produces a function                 such that ∀H ∈ F(G)

1.
2.

κ : X → Z
G ∼ H ⇒ κ(G) = κ(H)

G !∼ H ⇒ κ(G) > κ(H)

O(|X |+ |F|)

Corollary: There exists a partial ordering (acyclic directed graph) 
relating the Morse sets of   .F

Let                 be an outer approximation for f : X ×Q→ X
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Prop: Let                                    be the Morse sets 
for     . Then
where                                         is a Morse 
decomposition for     .  

FQ

{MQ(p) | p ∈ (PQ, >Q)}
M(SQ) := {MQ(p) | p ∈ (PQ, >Q)}

SQ

MQ(p) := Inv(|MQ(p)|, FQ)

We have a Morse Graph!

The acyclic directed graph that represents the 
Morse sets for      define a Morse graph
for a Morse decomposition of   

FQ MG(FQ)
SQ
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x

y

The Recurrent
Sets

(θ1, θ2) = (22.5, 25)Cube    centered at
Morse
Graph

Minimal
Morse 
Sets

Attracting
Neighborhoods

Contains
Non-trivial

Invariant sets

Q
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Prop:              is an isolating block for     . |MQ(p)| FQ

Given an outer approximation     there exist 
algorithms for producing index pairs                   
and computing      

FQ

P = (P1, P0)

FΛ0,P∗ : H∗(P1/P0, [P0])→ H∗(P1/P0, [P0])

We have a Conley-Morse Graph!

http://chomp.rutgers.edu/Software:

Reference: Computational Homology
            T. Kaczynski, K. M., M. Mrozek
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Contains
a fixed point

[1] : Z→ Z
Not Nilpotent

o

Contains
a period
3 orbit

o

o

o

Conley
Morse 
Graph


0 0 −1
−1 0 0
0 1 0





{1,−0.5± 0.866i}

{1}
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Relating the Computations

Consider                 such that                  .Q0, Q1 ∈ Q Q0 ∩Q1 "= ∅

How should we define                                     ?CMG(FQ0) ∼= CMG(FQ1)

{MQ0(p) | p ∈ (PQ0 , >Q0)} {MQ1(q) | q ∈ (PQ1 , >Q1)}
We have the Morse sets for outer approximations:

Construct relation          with relations           if pi → qj

MQ0(pi) ∩MQ1(qj) "= ∅

ιQ1,Q0

Defn:                 and                 are phenotypically 
equivalent if          is a directed graph isomorphism.

CMG(FQ0) CMG(FQ1)
ιQ1,Q0
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An Example

unstable
equilibrium

stable
period 2

orbit

Period Doubling Bifurcation f : R× R→ R

stable
equilibrium

FQ,0 : Z2 → Z2

[
0 1
1 0

]

FQ,0 : Z → Z
1 "→ 1

FQ,1 : Z → Z
1 "→ −1
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The 
Data
Base!

θ1

θ2

10
10

50

50

Different 
colors 
represent 
different 
phenotypic
dynamics
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Recall:      is an isolating neighborhood if Inv(N, f) ⊂ int(N)

Thus: If    is an isolating neighborhood for      then     is an 
isolating neighborhood for    .

N fλ0

fλ1

N

N

Theorem: (Conley, Montgomery) The space of isolated 
invariant sets is a sheaf over   .Λ

Remark 1: We have built a bundle 
fiber = Conley-Morse graph

over each colored region in parameter space.

Remark 2: If these bundles are nontrivial, then 
there must be global bifurcations.

θ1

θ2

10
10

50

50
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Let’s Query the DataBase!
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Multiple Basins of Attraction
(Multiple minima in directed graph)

θ1

θ2

10
10

50

50
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θ1

θ2

10
10

50

50

Probable Extinction
(Minimal element of graph contains a cube which intersects origin)

Not the 
origin
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Possible Stable Period 3 Orbit

θ1

θ2

10
10

50

50
(Minimal element of graph with index          )

{
11/3

}
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θ1

θ2

10
10

50

50

Interpretive
Guide

to
Dynamics

Equilibrium
2-d unstable
manifold 
with flip

Equilibrium
1-d unstable
manifold 
with flip

Stable Period
2 orbit

Period Doubling Bifurcation






0
−1
0











−1, 1
0
0






Conley 
Morse 
Graph





0
0
−1





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Interpretive
Guide

to
Dynamics

Equilibrium
2-d unstable
manifold 
with flip

Equilibrium
1-d unstable
manifold 
with flip

Stable Period
2 orbit






0
−1
0











−1, 1
0
0






Conley 
Morse 
Graph





0
0
−1





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θ1

θ2

10
10

50

50

Interpretive
Guide

to
Dynamics

Equilibrium
2-d unstable

manifold

Equilibrium
stable

Conley Morse Graph






1
0
0











0
0
−1





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θ1

θ2

10
10

50

50

Possible
Period

Doubling
Bifurcation






0
−1
0











−1, 1
0
0











0
0
−1











1
0
0











0
0
−1





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θ1

θ2

10
10

50

50






0
0
−1











0
11/3

0











11/3

0
0











1
0
0











0
0
−1











1
0
0











0
0
0











1
0
0











0
0
−1






Possible
Saddle-Node
Bifurcation

35Tuesday, April 1, 2008



p = 0.6 p = 0.7 p = 0.8 p = 0.9

Λ = [0, 50]× [0, 100]
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Thank-you for your attention
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