Building a Database

 for theGlobal Dynamics
of

Multi-Parameter Systems Konstantin Mischaikow

Dept. of Mathematics/BioMaPS Institute Rutgers
mischaik@math.rutgers.edu

Z. Arai, Kyoto
W. Kalies, Florida Atlantic Univ.
H. Kokubu, Kyoto
H. Oka, Ryukoku
P. Pilarczyk

Why do we want Databases of Global Dynamics?
Mathematical Answer: Interesting physical systems often involve many parameters and the dynamics is of fundamental importance. Normal form theory tells us what happens near singularities. Want similar information globally.

Scientific Answer: This is already being done but without the full perspective of dynamical systems.
von Dassow, et. al., Nature 2000, "The segment polarity network is a robust development module"

136 dimensional ode, 50 unknown parameters, phenomonological nonlinearities

240,000 randomly chosen points in parameter space More than $1,000,000$ simulations

The General Framework

$f: X \times \Lambda \rightarrow X$ continuous

$$
(x, \lambda) \mapsto f(x, \lambda)=f_{\lambda}(x)
$$

X locally compact metric space $\left(\mathbb{R}^{n}\right)$
$\Lambda \subset \mathbb{R}^{m}$
Goals for a Data-Base

We would like to be able to query to:

- Identify the structure of recurrent dynamics
- Identify gradient-like (non recurrent) dynamics
- Detect and identify bifurcations

Concepts are General

Evolution Equation:

$$
u_{t}=F(u) \quad \begin{array}{rlrl}
\varphi:[0, \infty) \times X & \rightarrow X & f: X & \rightarrow X \\
\varphi(0, u) & =u & f(u) & =\varphi(\tau, u)
\end{array}
$$

Time Series Data:

$$
u_{0}, u_{1}, u_{2}, u_{3}, \ldots \quad x^{i}=\left(u_{i}, u_{i+1}, u_{i+2}\right) \in \mathbb{R}^{3}
$$

$$
\begin{aligned}
f: X & \rightarrow X \\
x^{i} & \mapsto x^{i+1}
\end{aligned}
$$

The Basic Problem

- Chaotic dynamics implies sensitivity with respect to initial conditions.
- Solution: Focus on invariant sets. $f_{\lambda}\left(S_{\lambda}\right)=S_{\lambda}$
- Bifurcation theory implies structural stability is not generic. Discussed in Stefano's opening lecture in CANDY08 workshop.
- Solution: Focus on isolating neighborhoods and isolated invariant sets.

$$
S_{\lambda}=\operatorname{Inv}\left(N, f_{\lambda}\right) \subset \operatorname{int}(N)
$$

Implies moving beyond classical ideas of bifurcations and structural stability.

Form of the Data-Base

stable period 2
orbit

$$
1<\mu<3 \quad 3<\mu<1+\sqrt{6}
$$

Example: The Logistic Map

$$
f: \mathbb{R} \times[1,4] \rightarrow \mathbb{R}
$$

$$
f_{\mu}(x)=f(x, \mu)=\mu \cdot x \cdot(1-x)
$$

Data in Data-Base

Directed Graph

 (gradient structure)Algebraic Topology (recurrent structure)

Some Notation

$f: X \times \Lambda \rightarrow X$

Parameterized Dynamical System $F: X \times \Lambda \rightarrow X \times \Lambda$

$$
F(x, \lambda)=\left(f_{\lambda}(x), \lambda\right)=(f(x, \lambda), \lambda)
$$

Given $\Lambda_{0} \subset \Lambda$ denote the restriction of F to $X \times \Lambda_{0}$ by

$$
F_{\Lambda_{0}}: X \times \Lambda_{0} \rightarrow X \times \Lambda_{0}
$$

Observe: $F=F_{\Lambda}$
f_{λ} can be identified with $F_{\{\lambda\}}$.

A Simple Population Model

A density dependent Leslie model:
first year population
second year population

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto[
$$

$\left.\begin{array}{c}\left(\theta_{1} x+\theta_{2} y\right) e^{-c\left(\theta_{1} x+\theta_{2} y\right)} \\ (1-\mu) x\end{array}\right]$
Mathematically: $\quad f: \mathbb{R}^{2} \times \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$

$$
f(x, \theta, \mu, c)=\frac{1}{c} f(c x, \theta, \mu, 1)
$$

To communicate the
ideas I want to show $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{c}\left(\theta_{1} x+\theta_{2} y\right) e^{-0.1\left(\theta_{1} x+\theta_{2} y\right)} \\ 0.7 \cdot x\end{array}\right]$ pictures:

$$
\begin{aligned}
& f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \left(x, y ; \theta_{1}, \theta_{2}\right)
\end{aligned}
$$

$f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ $\left(x, y ; \theta_{1}, \theta_{2}\right)$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
\left(\theta_{1} x+\theta_{2} y\right) e^{-0.1(x+y)} \\
0.7 x
\end{array}\right]
$$

Parameterized Dynamical System

$$
F: \mathbb{R}^{2} \times[10,50]^{2} \rightarrow \mathbb{R}^{2} \times[10,50]^{2}
$$

A1: There exists a compact set $R \subset \mathbb{R}^{n} \times \Lambda$ which is an isolating neighborhood for F.

$$
S:=\operatorname{Inv}(R, F)
$$

Not true for Leslie model, but $f_{\theta}(R \backslash\{0\}) \subset \operatorname{int}(R \backslash\{0\})$ where

$$
R:=\left\{\left(x_{1}, x_{2}, \theta_{1}, \theta_{2}\right) \mid 0 \leq x_{1} \leq \theta_{1}+\theta_{2}, 0 \leq x_{2} \leq 0.7\left(\theta_{1}+\theta_{2}\right)\right\}
$$

Want to describe: $S_{\theta} \quad \theta \in[10,50]^{2}$

Reasonable Questions for a Population Model Global Dynamics:

Are there multiple basins of attraction? How large are the basins of attraction? Should we expect extinction?

Local Dynamics:
Are there equilibria and/or periodic orbits? Is there chaotic dynamics?

Bifurcations:
Are there period doubling bifurcations?
Are there saddle node bifurcations?

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
\left(\theta_{1} x+\theta_{2} y\right) e^{-0.1(x+y)} \\
0.7 x
\end{array}\right]} \\
& 10 \leq \theta_{i} \leq 50 \quad \theta_{1}=\theta_{2}
\end{aligned}
$$

Ugarcovici \& Weiss, Nonlinearity '04

Limitations to Presentation:

Single
parameter

Only see the attractors

Can't easily probe or extend the results

A Review of Conley Theory

Morse Decompositions

Conley Index

A Morse decomposition of $S_{\Lambda_{0}}$ is a finite collection of disjoint isolated invariant subsets of $S_{\Lambda_{0}}$, called Morse sets,

$$
\mathbf{M}\left(S_{\Lambda_{0}}\right):=\left\{M_{\Lambda_{0}}(p) \subset S_{\Lambda_{0}} \mid p \in \mathcal{P}_{\Lambda_{0}}\right\},
$$

for which there exists a strict partial order $>_{\Lambda_{0}}$, called an admissible order, on the indexing set $\mathcal{P}_{\Lambda_{0}}$ such that for every $(x, \lambda) \in S_{\Lambda_{0}} \backslash \cup_{p \in \mathcal{P}} M_{\Lambda_{0}}(p)$ and any complete orbit γ of (x, λ) in $S_{\Lambda_{0}}$ there exists indices $p>_{\Lambda_{0}} q$ such that under $F_{\Lambda_{0}}$

$$
\omega(\gamma) \subset M_{\Lambda_{0}}(q) \quad \text { and } \quad \alpha(\gamma) \subset M_{\Lambda_{0}}(p)
$$

Since $\mathcal{P}_{\Lambda_{0}}$ is a partially ordered set, a Morse decomposition can be represented as an acyclic directed graph $\mathcal{M G}\left(\Lambda_{0}\right)$ called the Morse graph.

Remarks about Morse Decompositions:

- All recurrent dynamics occurs within Morse sets.
- Morse Decompositions are not unique.
- The empty set can be a Morse set (Numerical artifacts).
- Given a Morse decomposition

$$
\mathbf{M}\left(S_{\Lambda_{0}}\right):=\left\{M_{\Lambda_{0}}(p) \subset S_{\Lambda_{0}} \mid p \in\left(\mathcal{P}_{\Lambda_{0}},>_{\Lambda_{0}}\right)\right\}
$$

if $\Lambda_{1} \subset \Lambda_{0}$ then

$$
\left\{M_{\Lambda_{1}}(p) \subset S_{\Lambda_{1}} \mid p \in\left(\mathcal{P}_{\Lambda_{0}},>_{\Lambda_{0}}\right)\right\}
$$

is a Morse decomposition of $S_{\Lambda_{1}}$ under $F_{\Lambda_{1}}$ where

$$
M_{\Lambda_{1}}(p):=M_{\Lambda_{0}}(p) \cap\left(X \times \Lambda_{1}\right)
$$

Conley Index

Let $P=\left(P_{1}, P_{0}\right)$ with $P_{0} \subset P_{1}$ be a pair of compact sets in $X \times \Lambda_{0}$.

Define $F_{\Lambda_{0}, P}: P_{1} / P_{0} \rightarrow P_{1} / P_{0}$ by

$$
\begin{aligned}
& F_{\Lambda_{0}, P}(x)= \begin{cases}F_{\Lambda_{0}}(x, \lambda) & \text { if }(x, \lambda), F_{\Lambda_{0}}(x, \lambda) \in P_{1} \backslash P_{0} \\
{\left[P_{0}\right]} & \text { otherwise }\end{cases} \\
& \text { air for } F_{\Lambda_{0}, P} \text { it } \xrightarrow[P_{1} / P_{0}]{\stackrel{F_{\Lambda_{0}, P}}{ }}
\end{aligned}
$$

$\substack{\text { faximan } \\ \text { maxderfit }}$
$P_{0} \quad P_{\Lambda_{0}, P}(x)=\{[P$
P_{1}
is an index pair for $F_{\Lambda_{0}, P} \mathrm{i}$
$\substack{\text { handman } \\ \text { maxdeft }}$
$P_{0} \quad F_{\Lambda_{0}, P}(x)=\{[P$
P_{1}
P is an index pair for $F_{\Lambda_{0}, P}{ }^{\mathrm{i}}$

- $F_{\Lambda_{0}, P}$ is continuous.
- $\operatorname{cl}\left(P_{1} \backslash P_{0}\right)$ is an isolating neighborhood

Fact: If no iterate of $F_{\Lambda_{0}, P}$ is homotopic to the trivial map, then $\operatorname{Inv}\left(\operatorname{cl}\left(P_{1} \backslash P_{0}\right), F_{\lambda_{0}}\right) \neq \emptyset$

Corollary: If $F_{\Lambda_{0}, P_{*}}: H_{*}\left(P_{1} / P_{0},\left[P_{0}\right]\right) \rightarrow H_{*}\left(P_{1} / P_{0},\left[P_{0}\right]\right)$ is not nilpotent, then $\operatorname{Inv}\left(\operatorname{cl}\left(P_{1} \backslash P_{0}\right), F_{\Lambda_{0}}\right) \neq \emptyset$.

The Conley index is the shift equivalence class of

$$
F_{\Lambda_{0}, P *}: H_{*}\left(P_{1} / P_{0},\left[P_{0}\right]\right) \rightarrow H_{*}\left(P_{1} / P_{0},\left[P_{0}\right]\right)
$$

Theorem: Let $S_{\Lambda_{0}}:=\operatorname{Inv}\left(\operatorname{cl}\left(P_{1} \backslash P_{0}\right), F_{\Lambda_{0}}\right)$ If Λ_{0} is simply connected then the Conley index of $S_{\Lambda_{0}}$ and S_{λ} are equivalent for all $\lambda \in \Lambda_{0}$.

Computing the Dynamics Choose a cubical grid \mathcal{Q} that covers Λ.

Choose a cubical grid \mathcal{X} that covers X.
 Construct a combinatorial multivalued map $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$.

$$
G \mapsto \mathcal{F}_{Q}(G) \subset \mathcal{X}
$$

A multivalued map $\mathcal{F}_{Q}: \mathcal{X} \rightrightarrows \mathcal{X}$ is an outer approximation of $f: X \times Q \rightarrow X$ if

$$
f(G, Q) \subset \operatorname{int}\left(\left|\mathcal{F}_{Q}(G)\right|\right) \quad \forall G \in \mathcal{X}
$$

Let $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ be an outer approximation for $f: X \times Q \rightarrow X$ Think of \mathcal{F} as a directed graph: Vertices $G \in \mathcal{X}$

The recurrent set for \mathcal{F} is
Edges $\quad G \rightarrow H$ if $H \in \mathcal{F}(G)$

$$
\mathcal{R}(\mathcal{F}):=\{G \in \mathcal{X} \mid \exists \text { nontrivial path from } G \text { to } G\}
$$

A Morse set of $\mathcal{R}(\mathcal{F})$ is an equivalence class:

$$
\begin{array}{lll}
G \sim H & \Leftrightarrow \quad \text { There exists a path from } G \\
\text { to } H \text { and a path from } H \text { to } G .
\end{array}
$$

Fact: There exists an algorithm $O(|\mathcal{X}|+|\mathcal{F}|)$ that produces a function $\kappa: \mathcal{X} \rightarrow \mathbb{Z}$ such that $\forall H \in \mathcal{F}(G)$

$$
\begin{aligned}
& \text { 1. } \quad G \sim H \Rightarrow \kappa(G)=\kappa(H) \\
& \text { 2. } \\
& \quad G \nsim H \Rightarrow \kappa(G)>\kappa(H)
\end{aligned}
$$

Corollary: There exists a partial ordering (acyclic directed graph) relating the Morse sets of \mathcal{F}.

We have a Morse Graph!

Prop: Let $\left\{\mathcal{M}_{Q}(p) \mid p \in\left(\mathcal{P}_{Q},>_{Q}\right)\right\}$ be the Morse sets for \mathcal{F}_{Q}. Then $\mathbf{M}\left(S_{Q}\right):=\left\{M_{Q}(p) \mid p \in\left(\mathcal{P}_{Q},>_{Q}\right)\right\}$ where $M_{Q}(p):=\operatorname{Inv}\left(\left|\mathcal{M}_{Q}(p)\right|, F_{Q}\right)$ is a Morse decomposition for S_{Q}.

The acyclic directed graph that represents the Morse sets for \mathcal{F}_{Q} define a Morse graph $\mathcal{M} \mathcal{G}\left(\mathcal{F}_{Q}\right)$ for a Morse decomposition of S_{Q}

The Recurrent
Sets

Attracting
Neighborhoods

Minimal
Morse Sets

We have a Conley-Morse Graph!

Prop: $\left|\mathcal{M}_{Q}(p)\right|$ is an isolating block for F_{Q}.
Given an outer approximation \mathcal{F}_{Q} there exist algorithms for producing index pairs $P=\left(P_{1}, P_{0}\right)$ and computing

$$
F_{\Lambda_{0}, P *}: H_{*}\left(P_{1} / P_{0},\left[P_{0}\right]\right) \rightarrow H_{*}\left(P_{1} / P_{0},\left[P_{0}\right]\right)
$$

Reference: Computational Homology T. Kaczynski, K. M., M. Mrozek

Software: http://chomp.rutgers.edu/

min

Relating the Computations

Consider $Q_{0}, Q_{1} \in \mathcal{Q}$ such that $Q_{0} \cap Q_{1} \neq \emptyset$.
How should we define $\mathcal{C M G}\left(\mathcal{F}_{Q_{0}}\right) \cong \mathcal{C M G}\left(\mathcal{F}_{Q_{1}}\right)$?
We have the Morse sets for outer approximations:
$\left\{\mathcal{M}_{Q_{0}}(p) \mid p \in\left(\mathcal{P}_{Q_{0}},>_{Q_{0}}\right)\right\} \quad\left\{\mathcal{M}_{Q_{1}}(q) \mid q \in\left(\mathcal{P}_{Q_{1}},>_{Q_{1}}\right)\right\}$
Construct relation $\iota_{Q_{1}, Q_{0}}$ with relations $p_{i} \rightarrow q_{j}$ if

$$
\mathcal{M}_{Q_{0}}\left(p_{i}\right) \cap \mathcal{M}_{Q_{1}}\left(q_{j}\right) \neq \emptyset
$$

Defn: $\mathcal{C M} \mathcal{G}\left(\mathcal{F}_{Q_{0}}\right)$ and $\mathcal{C M} \mathcal{G}\left(\mathcal{F}_{Q_{1}}\right)$ are phenotypically equivalent if $\iota_{Q_{1}, Q_{0}}$ is a directed graph isomorphism.

An Example

Period Doubling Bifurcation $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$

Recall: N is an isolating neighborhood if $\operatorname{Inv}(N, f) \subset \operatorname{int}(N)$

Thus: If N is an isolating neighborhood for $f_{\lambda_{0}}$ then N is an isolating neighborhood for $f_{\lambda_{1}}$

Theorem: (Conley, Montgomery) The space of isolated invariant sets is a sheaf over Λ.

Remark 1: We have built a bundle fiber = Conley-Morse graph over each colored region in parameter space.

Remark 2: If these bundles are nontrivial, then there must be global bifurcations.

Let's Query the DataBase!

Multiple Basins of Attraction (Multiple minima in directed graph)

10

Probable Extinction

(Minimal element of graph contains a cube which intersects origin)

Possible Stable Period 3 Orbit (Minimal element of graph with index $\left\{1^{1 / 3}\right\}$)

Interpretive

Guide Period Doubling Bifurcation to Dynamics Equilibrium 2-d unstable manifold with flip

Equilibrium

1-d unstable manifold with flip

Interpretive
Guide to
Dynamics
Equilibrium
2-d unstable manifold with flip

Equilibrium
1-d unstable manifold with flip
Conley Morse Graph

Stable Period 2 orbit

Interpretive

Guide to Dynamics

Equilibrium 2-d unstable manifold

Equilibrium

 stableConley Morse Graph

$p=0.6$
$p=0.7$
$p=0.8$
$p=0.9$
$\Lambda=[0,50] \times[0,100]$

Thank-you for your attention

National Science Foundation
WHERE DISCOVERIES BEGIN

