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Abstract

Due to a larger surface to volume ratio, phenomena at the nanoscale require consideration of sur-
face energy effects and the latter are frequently used to interpret size-effects in material behavior.
Extensive work exists on deriving homogenized constitutive responses for macroscopic composites—
relating effective properties to various microstructural details. In the present work, we focus on
homogenization of surfaces. Indeed, elucidation of the effect of surface roughness on the surface
energy, stress and elastic behavior is relatively under-studied and quite relevant to the behavior
of nanostructures. We present derivations that relate both periodic and random roughness to the
effective surface elastic behavior. We find that the residual surface stress is hardly affected by
roughness while the superficial elastic properties are dramatically altered and, importantly, they
may also change sign—this has significant ramifications in the interpretation of sensing based on
frequency measurement changes. Interestingly, even if the bare surface has a zero surface elasticity
modulus, roughness is seen to endow it with one. Using atomistic calculations, we verify the quali-
tative validity of the obtained theoretical insights. We show, through an illustrative example, that
the square of resonance frequency of a cantilever beam with rough surface can decrease almost by
a factor of two compared to a flat surface.

1 Introduction

For a cubic piece of copper with 1 nm sides, nearly 64% of the atoms reside on the surface. This
simple fact makes apparent the enormous role surfaces play at the nanoscale. Surface atoms have
different coordination numbers, charge distribution and subsequently different physical, mechanical
and chemical properties. These differences are manifested phenomenologically in that the various
bulk properties such as elastic modulus, melting temperature, electromagnetic properties among
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others are different for surfaces. For example, experiments show that some surfaces are elastically
softer (Goudeau et al., 2001; Hurley et al., 2001; Villain et al., 2002; Sun and Zhang, 2003; Workum
and Pablo, 2003), while others stiffer (Renault et al., 2003). These differences play an increasing
role as the material characteristic size is shrunk smaller and smaller e.g. leading to size-dependency
in the elastic modulus of nanostructures.

Surface energy effects are usually accounted via recourse to a theoretical framework proposed
by Gurtin and Murdoch (1975, 1978). The surface is treated as a zero-thickness deformable elastic
entity possessing non-trivial elasticity as well as a residual stress (the so-called “surface stress”). It is
worthwhile to indicate that while fundamentally similar, a parallel line of works exist that are more
materials oriented: Cahn (1989), Streitz (1994), Weissmuller and Cahn (1997), Johnson (2000),
Voorhees and Johnson (2004) and Cammarata (1994, 2009a, 2009b) among others. The reader
is referred to an extensive recent review by Cammarata (2009) on the literature. Steigmann and
Ogden (1997) later generalized the Gurtin-Murdoch theory and incorporated curvature dependence
of surface energy, thus resolving some important issues related to the use of Gurtin-Murdoch theory
in the context of compressive stress states and for wrinkling type behavior. A few recent works have
theoretically and atomistically examined the importance of the Steigmann-Ogden generalization
(see for example, Fried and Todres, 2005; Schiavone and Ru, 2009, Chhapadia et. al., 2011a,b,
Mohammadi and Sharma, 2012).

The ramifications of surface-energy related size-effects have been examined in several contexts,
e.g. nanoinclusions (Duan et al., 2005a, 2005b; He and Li, 2006; Lim et al., 2005; Hui and Chen,
2010; Mi and Kouris 2007; Sharma et al. 2003, Sharma and Ganti, 2004; Sharma and Wheeler,
2007; Tian and Rajapakse, 2007, 2008), quantum dots ( Sharma et al. 2002, 2003; Peng et al.,
2006), nanoscale beams and plates (Miller and Shenoy, 2000; Jing et al. 2006; Bar et al. 2010;
Liu and Rajapakse, 2010; Liu et. al., 2011), nano-particles, wires and films (Streitz et al. 1994;
Diao et al. 2003, 2004; Villain et al., 2004; Dingreville et al., 2005; Diao et al., 2006), sensing and
vibration (Lim and He, 2004; Wang and Feng, 2007; Park and Klein, 2008; Park, 2009), composites
(Mogilevskaya et al., 2008). The following papers have focused on calculation of surface properties
from atomistics: Shenoy, 2005; Shodja and Tehranchi, 2010; Mi et al., 2008, Chhapadia et. al.,
2011a,b, Mohammadi and Sharma, 2012).

Some recent works are worth mentioning as they provide clarifications and guidance on the
theories underlying surface energy effects, e.g. Ru (2010), Mogielvskaya (2008, 2010) and Schiavone
and Ru (2009). The papers by Wang et al. (2010) and Huang and Sun (2007) have pointed out the
importance of residual surface stress on the elastic properties of nanostructures and composites.

Surfaces of real materials, even the most thoroughly polished ones, will typically exhibit random
roughness across different lateral length scales. How are the surface properties renormalized due to
such roughness? Can the surface roughness be artificially tailored to obtain desired surface charac-
teristics? These questions are at the heart of the present manuscript. We provide a homogenization
scheme for both periodically and randomly rough surface duly incorporating both surface stress and
surface elasticity. Very little work has appeared that addresses effect of roughness on both surface
stress and surface elasticity. Notable exceptions are the following recent works: Wiessmuller and
Duan (2008) who focus on deriving the effective residual stress for the rough surface of a cantilever
beam and their follow-up work by Wang et al., (2010) who generalized it to the anisotropic case.
We will briefly comment on their in the discussion section. One specific difference is that we also
derive effective superficial elasticity constants and not just the residual surface stress. The outline
of this paper is as follows. In Section 2 we briefly summarize the Gurtin-Murdoch surface elasticity
theory and formulate the problem while in Section 3 we present our general homogenization strate-
gy. In Section 4, specializing to the 2D case, we present results for both randomly and periodically
rough surfaces. Discussion of our results is in Section 5 where present results of our atomistic
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calculations designed to check the qualitative correctness of the theoretical predictions and point
out the implications for nano-cantilever-beam based sensing.

Notation. We will employ both direct and index notion: vectors and tensors are represented
by bold symbols, e.g., a, T, etc, and in index notation the corresponding components are denoted
by ai, Tij , etc with the canonical basis {e1, e2, e3} tacitly understood. Summation over repeated
index is followed unless otherwise stated. The basis {e1, e2, e3} are also written as {ex, ey, ez} and
the associated spatial coordinates are either denoted by (x1, x2, x3) or (x, y, z). Partial derivatives
with respect to spatial variable xi is sometimes denoted by ( ),i. The inner (dot) product between
two matrix of the same size A and B is defined as A ·B = Tr(ABT ) = ApiBpi.

We also collect some useful relations pertaining to calculus on surfaces. Let B ⊂ R3 be a regular
simply connected domain, tn be the unit outward normal on ∂B (cf., Fig. 1(a)), I be the identity
mapping from R3 to R3, and

P = I− tn ⊗ tn (1.1)

be the projection from R3 to the tangential subspace T := {a ∈ R3 : a · tn = 0} at a point p ∈ ∂B.
Let ϕ : B → R be a scalar field, u : B → R3 a vector field, and T : B → Lin(R3,R3) := {M :
R3 → R3 is linear} be a tensor field. Suppose that ϕ,u,T are differentiable up to the boundary
∂B. Then the surface gradient of ϕ and u can be defined as

∇sϕ = P∇ϕ, ∇su = (∇u)P,

where the convention (∇u)pi = ∂xi(u)p is followed. If, in particular, u : B → R3 is the displacement,
then the surface strain is defined as

Es = PEP =
1

2
[P∇su + (P∇su)T ] on ∂B, (1.2)

which measures the deformation within the surface ∂B. Also, we have the following identities (or
definitions) from Gurtin and Murdoch (1975):{

divsu = Tr(P∇su), a · (divsT) = divs(T
Ta) ∀a ∈ R3,

divs(ϕu) = ϕ∇su + u · ∇sϕ, divs(ϕT) = ϕdivsT + T∇sϕ.
(1.3)

Let C ⊂ ∂B be a simple contour, ν ∈ T be the unit outward normal on C, and SC ⊂ ∂B be
the surface enclosed by C (cf., Fig. 1(b)). In analogy with the classic divergence theorem, if the
vector field u is tangential on ∂B and differentiable we have∫

SC

divsu =

∫
C
u · ν,

Applying the above identity to TTa for a differentiable tensor field T(x) : T → IR3, by (1.3) we
obtain ∫

SC

divsT =

∫
C
Tν, (1.4)

which will be critical for deriving the local form of the equilibrium equation on the surface.
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Figure 1: (a) An elastic body B ⊂ R3 with surface ∂B and unit outward normal tn, and (b) the
subsurface SC ⊂ ∂B enclosed by a simple contour C with unit outward normal ν within the surface.

2 Surface Elasticity

Let B ⊂ R3 be a regular domain occupied by an elastic body, C : R3×3 → R3×3 be the fourth-order
bulk stiffness tensor of the elastic medium. In linearized elasticity and in the absence of applied
body force, the displacement u : B → R3 satisfies the equilibrium equation

div(C∇u) = 0 in B. (2.1)

Appropriate boundary conditions on ∂B are necessary for solving the above equations which we
describe below in detail.

We employ the linearized surface elasticity theory of Gurtin and Murdoch (Gurtin and Murdoch,
1975; Gurtin et. al., 1998). In this theory the surface is modeled as a deformable elastic membrane
adhering to the bulk material without slipping. From (1.2), we see that surface strains belong to
the following subspace

M = {M ∈ Lin(R3,R3) : Mtn = 0, MT = M}. (2.2)

Let τ0 ∈ R be the magnitude of the residual isotropic stress tensor and Is = P be the identity
mapping from the tangential space T to T . We adopt the linear isotropic surface constitutive law
from Gurtin and Murduch (1975), equation (8.6), i.e., for given displacement u : B → R3 the
surface stress is given by

Ss = Cs∇u + S0
s = CsEs + S0

s on ∂B (2.3)

where S0
s = τ0Is is the residual surface stress tensor, the forth-order symmetric surface stiffness

tensor Cs : R3×3 → R3×3 is such that

Cs(H) = 2µsPEP + λsTr(PEP)Is, E =
1

2
(H + HT ), ∀H ∈ R3×3, (2.4)

and µs, λs are the surface elastic constants in analogy with the bulk Lamé constants.
We remark that the above surface stiffness tensor Cs is assumed to be independent of the

normal direction of the surface. This is not true for crystalline surfaces but facilitates analytical
results in the same vein as the frequent use of the assumption of isotropy for bulk elasticity. Also,
the surface constitutive law (2.3) is different from that of Gurtin and Murdoch (1975) by a term
of τ0∇su. This term leads to asymmetry of the surface stress tensor and quite a few works have
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chosen to ignore its presence completely (as justified in some cases). The reader is referred to Ru
(2010), Mogilevskaya et al. (2008) and Huang (2010) for further discussions on this subject. We
have chosen to neglect this term. A simple calculation (not presented in this manuscript) confirmed
that the effect of this term is small in the present context.

In the absence of applied traction on ∂B, the equilibrium of any sub-surface SC ⊂ ∂B implies
that (cf., Fig. 1 (b))∫

C
Ssν +

∫
SC

(C∇u)(−tn) = 0, i.e., (C∇u)tn = divs[Cs∇u + S0
s] on ∂B, (2.5)

where divs denotes surface divergence. The above equations are a generalization of the classic
Young-Laplace equation and also serve as boundary conditions for (2.1). In summary, equations
(2.1) and (2.5) consitute the boundary value problem for linearized elasticity with surface elastic
effects.

Further, it is worthwhile to note that equations (2.1) and (2.5) are also the Euler-Lagrange
equation of the variational principle:

min
u

{
U [u] :=

1

2

∫
B
∇u ·C∇u + Γ[u]

}
, (2.6)

where Γ[u] denotes the elastic energy contributed by the surface (Gurtin and Murdoch, 1975,
equation 9.3 and theorem 9.1):

Γ[u] =

∫
∂B

[ 1

2
∇u ·Cs∇u +∇u · S0

s + γ
]
. (2.7)

Here the constant γ measures the energy cost of creating a free surface and has no effect on (2.1)
and (2.5). This is the surface energy in the absence of surface strain and may be linked to fracture
toughness. The existence and uniqueness of solutions to (2.6) can be similarly discussed as for bulk
elasticity based on the algebraic properties of tensors C and Cs (Altenbach et al., 2011).

3 Homogenization Strategy and Problem Formulation

In this section we outline our homogenization strategy for a rough surface, formulate the problem
and sketch out the solution method.

As illustrated in Fig. 2, we consider a semi-infinite elastic body with B = {(x, y, z) : y < h(x, z)},
where the function h(x, z) describes the surface roughness. Assume that the amplitude of the
roughness h is small compared with the length scale of the overall bulk body: h ∼ δ � 1 ∼
length scale of the bulk body. The number δ will be the small parameter used in our subsequent
perturbation calculations. The overall half space is subject to a uniform in-plane far applied stress
CH∞ where H∞ ∈ R3×3 is the corresponding far-field strain. By (2.1) and (2.5) our original
problem is to solve for u : B → R3.

div(C∇u) = 0 in B,

(C∇u)tn = divs(Cs∇u + S0
s) on ∂B,

∇u→ H∞ as |y| → ∞.
(3.1)

The boundary condition (3.1)2, for a rough surface ∂B, prevents an exact solution and accordingly
we will take recourse in the formal perturbation method. Assume that the solution to (3.1) can be
expanded as

u = u(0) + δu(1) + δ2u(2) + · · · . (3.2)
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Inserting (3.2) into (3.1), by (3.1)1 and (3.1)3 we have

{
div[C∇u(i)] = 0 (i = 0, 1, 2) in B0,

∇u(0) → H∞, ∇u(i) → 0 (i = 1, 2) as |y| → ∞,
(3.3)

where B0 = {(x, y, z) : y < 0} is the half space with a flat surface.
The boundary conditions on the rough surface, i.e., (3.1)2, can be converted to an effective

boundary condition on the nominal flat surface ∂B0. To this end, we assume that the displacement
on ∂B can be obtained by extrapolating from the displacement and their derivatives on ∂B0

through Taylor series expansion. Upon tedious calculations presented in § 4.1, we find the boundary
conditions on the nominal flat surface as

(C∇u(i))e2 = p(i) (i = 0, 1, 2) on ∂B0, (3.4)

where the detailed expressions for surface traction p(i) are presented in § 4.1. We recognize that the
boundary value problems specified by (3.3) and (3.4) for u(i) are the classical Cerruti-Boussinesq
half-space problems whose solutions can be found in textbooks, e.g., Johnson (1985).

Once the local stress and strain are found, we can calculate the total elastic energy of the
half-space in the presence of the rough surface as a function of the far applied strain H∞:

Eact(H∞) =
1

2

∫
B

[
∇u ·C∇u−∇u(0) ·C∇u(0)

]
+

∫
∂B

[ 1

2
∇u ·Cs∇u +∇u · S0

s + γ
]
, (3.5)

where the bulk energy for flat surface is subtracted to avoid unbounded integrals. The total elastic
energy Eact depends on the far applied strain H∞ since u ≈ u(0) +δu(1) +δ2u(2) according to (3.2),
and u(k) (k = 0, 1, 2) being the solution of (3.1) and (3.4) depends on the far applied strain H∞.
We remark that the first and second term on the right hand side of (3.5) are the elastic energy
contributed by the bulk and surface, respectively.

We will approximate rough-surface elastic body by a half-space solid with a flat surface where
the flat surface has effective properties different from the original rough surface. To define the
effective properties of the surface, we propose to equate the total elastic energy of the rough-
surface half space (Eact) to the total elastic energy of a half space with a nominal effective flat
surface (Eeff):

Eact(H∞) = Eeff(H∞), (3.6)

where

Eeff(H∞) =

∫
∂B0

[ 1

2
∇u(0) ·Ceff

s ∇u(0) +∇u(0) · (S0
s)

eff + γeff
]
, (3.7)

(S0
s)

eff is the effective surface residual stress, Ceff
s is the effective surface elasticity tensor, and γeff

the effective surface energy density in the absence of surface strain. The bulk energy term has been
subtracted from (3.7) in analogy with (3.5).

4 Solutions

4.1 Boundary conditions for perturbed solutions

We now specialize to two dimensions, assuming the body is infinite in −ey-direction, ±ex-directions,
and in either plane strain state (εzz = εzx = εzy = 0) or plane stress state (σzz = σzx = σzy = 0).
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For isotropic materials, the stress-strain relations for plane problems are given by:εxxεyy
εxy

 = L

σxxσyy
σxy

 , L =

L11 L12 0
L12 L11

0 0 L33

 , (4.1)

where the 3 × 3 matrix L, formed by elastic constants, are given by (E – Young’s modulus, µ –
shear modulus, ν – Poisson’s ratio):

L =
1

2µ

1− ν −ν 0
−ν 1− ν 0
0 0 1

 (plane strain) or
1

E

 1 −ν 0
−ν 1 0
0 0 (1 + ν)

 (plane stress). (4.2)

Our work can be readily extended to three dimensions. However, the calculations are quite tedious
with relatively little prospects for (additional) novel insights. We will employ two coordinate
systems. The first one is the canonical Cartesian frame (e1, e2) parallel and perpendicular to the
nominally flat surface while the second one (t1, t2) is the unit normal and unit tangent along the
curve, see Fig. 2. Assume that the surface is parameterized by y = δh0(x) (δ << 1). It is easy to
show that the transformations between the moving curvilinear frame (t1, t2) and fixed Cartesian
frame (e1, e2) are given by

tk = (M)kiei, ei = (N)iktk, (4.3)

where (Γ(δ, x) =
√

1 + δ2h2
0x, I is now the 2× 2 identity matrix)

M =
1

Γ(δ, x)

[
1 δh0x

−δh0x 1

]
= I + δW − 1

2
δ2h2

0xI + o(δ2), W =

[
0 h0x

−h0x 0

]
,

N = MT = M−1 = I− δW − 1

2
δ2h2

0xI + o(δ2), (4.4)

h0x = ∂xh0(x) (likewise, h0xx = ∂xxh0(x), h0xxx = ∂xxxh0(x), etc).

Figure 2: A rough surface profile

To address the effects of rough surface and surface elasticity, we have assumed formal expansion
(3.2) of the solution to (3.1). To solve for u(i) (i = 0, 1, 2), we need to convert the original boundary
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conditions (3.1)2 into boundary conditions on the nominal flat surface ∂B0. To this end, we further
assume that the displacement around the nominal flat surface ∂B0 (i.e., |y| ∼ δ) is given by

u(x, y) = u(x, 0) + y∂yu(x, 0) +
1

2
y2∂yyu(x, 0) + o(δ3). (4.5)

Therefore, around the nominal flat surface ∂B0 (i.e., |y| ∼ δ), by (4.5) the displacement gradient
is given by

H := ∇u = H0 + δH1 + δ2H2 + o(δ2), (4.6)

where

H0 = [∂xu
(0), ∂yu

(0)], H1 = [∂xu
(1), ∂yu

(1)] +
y

δ
[∂xyu

(0), ∂yyu
(0)], (4.7)

H2 = [∂xu
(2), ∂yu

(2)] +
y

δ
[∂xyu

(1), ∂yyu
(1)] +

y2

2δ2
[∂xyyu

(0), ∂yyyu
(0)].

In the above equations, the derivatives of u(i) are evaluated at y = 0 and taken as column vectors,
and hence Hi are 2× 2 matrices. Recall that t2 = e2− δh0xe1− 1

2δ
2h2

0xe2 + o(δ2) from (4.3)-(4.4).
Then the left hand side of (3.1)2 can be written as

(C∇u)t2 = (CH0)e2 + δ[(CH1)e2 − h0x(CH0)e1]

+δ2[(CH2)e2 − h0x(CH1)e1 −
1

2
h2

0x(CH0)e2] + o(δ2) on ∂B. (4.8)

To calculate the expansion of the right hand side of (3.1)2 with respect to δ, we first notice that

Cs∇u + S0
s = σsst1 ⊗ t1 + σ33ez ⊗ ez on ∂B, (4.9)

where

σss = t1 · [Cs(N
THN)]t1 + τ0 =: σ0

ss + δσ1
ss + δ2σ2

ss + o(δ2),

σ0
ss = t1 · (CsH

0)t1 + τ0, σ1
ss = t1 · [Cs(H

1 + WH0 + H0WT )]t1, (4.10)

σ2
ss = t1 · [Cs(H

2 + WH1 + H1WT − h2
0xH

0)]t1.

Next, by the last of (1.3) and that σ33 is constant and hence divs(σ33ez ⊗ ez) = 0, we have

divs[Cs∇u + S0
s] = σss[t1divst1 + (∇st1)t1] + t1(t1 · ∇sσss). (4.11)

Recall the following identities from differential geometry:

∇st1 = [δh0xx + o(δ2)]t2 ⊗ t1, divst1 = 0.

Therefore, by (4.3), (4.4) and (4.9) we find

divs[Cs∇u + S0
s] = δσssh0xxt2 + t1(t1 · ∇sσss)

= (σ0
ss),1e1 + δ

{
[(σ1

ss),1 + h0x(σ0
ss),2]e1 + [h0x(σ0

ss),1 + σ0
ssh0xx]e2

}
+δ2

{
[(σ2

ss),1 − h2
0x(σ0

ss),1 + h0x(σ1
ss),2 − h0xxh0xσ

0
ss]e1

+[h0x(σ1
ss),1 + h2

0x(σ0
ss),2 + σ1

ssh0xx]e2

}
on ∂B. (4.12)
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We remark that not all terms associated with δi (i = 0, 1, 2) contribute equally in regard of the
fact that for typical solids,

‖C‖ >> ‖Cs‖k, (4.13)

where 1/k is the typical wavelength of roughness profile h0(x) (i.e., the average distance between
neighboring peaks or valleys). For example, copper has ‖C‖ ∼ 1011 Pa while ‖Cs‖ ∼ 1N/m, and
hence the above inequality is satisfied for typical solids up to atomistic scale. Enforcing (4.13) and
neglecting lower order terms on the right hand side of (4.12), by (4.10) we have

divs[Cs∇u + S0
s] = δ

{
h0x(σ0

ss),2e1 + [h0x(σ0
ss),1 + σ0

ssh0xx]e2

}
+δ2[−h2

0x(σ0
ss),1 − h0xxh0xσ

0
ss]e1 on ∂B. (4.14)

Comparing (4.8) with (4.14), by (3.1)2 we find the boundary conditions for u(0) are given by

(C∇u(0))e2 = 0 on ∂B0. (4.15)

An obvious solution to the boundary value problem for u(0), i.e., (3.3) and (4.15), is a uniform
∇u(0) such that

H0 = ∇u(0) = H∞. (4.16)

By (4.7), we have

∇H0 = 0, H1 = ∇u(1), H2 = ∇u(2) + h0∂y∇u(1) on ∂B. (4.17)

Moreover, comparing (2.3) with (2.4) we obtain the boundary conditions for u(2):

(C∇u(1))e2 = h0x(C∇u0)e1 + h0xxσ
0
sse2 =: p(1) on ∂B0, (4.18)

and

(C∇u(2))e2 = −h0∂y(C∇u(1))e2 + h0x(C∇u(1))e1 +
1

2
h2

0x(C∇u(0))e2

−h0xxh0xσ
0
sse1 =: p(2) on ∂B0. (4.19)

In addition, we notice that the solutions to boundary value problems for u(i)(i = 1, 2), i.e., (3.3)
and (3.4) with p(i) given by (4.18)-(4.19), are explicitly given by (A.1). Upon specifying the surface
roughness profile h0(x), we can solve (3.3) and (3.4) for the elastic fields, compute the total elastic
energy (3.5) and (3.7) and find the effective properties of the nominal flat surface according to (3.6).
Below we present the detailed calculations for a sinusoidal surface and a random surface.

4.2 Sinusoidal roughness

To fix the idea we first consider a sinusoidal rough surface. Let the surface be described by
h(x) = δ cos(kx) (δk � 1). This rough surface may be regarded as a perturbation of the flat
surface ∂B0:

h(x) = 0 + δ cos(kx) = δh0(x), h0 = cos(kx), δk � 1 (4.20)

Assume that the far applied stress is given by CH∞ = ε∞xx/L11e1 ⊗ e1, i.e., by (4.1),

H∞ = ε∞xx

[
1 0

0 L12
L11

]
. (4.21)
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The zeroth order strain is given by (4.16) and (4.21). By (4.18), we have

p(1)
x = α1 sin(kx), p(1)

y = β1 cos(kx) on ∂B0, (4.22)

where α1 = −kε∞xx/L11 and β1 = −k2σ0
ss ≈ −k2τ0 are constants. The first order stress field in B0,

determined by the boundary value problem (3.3) and (3.4), is given by (A.1):

σ(1)
xx =

[
α1(2 + ky) + β1(1 + ky)

]
eky cos(kx),

σ(1)
yy = −

[
α1ky + β1(ky − 1)

]
eky cos(kx), (4.23)

σ(1)
xy =

[
α1(1 + ky) + β1ky

]
eky sin(kx).

Therefore,

ε(1)
xx =

[
α1[2L11 + (L11 − L12)ky] + β1[L11 + L12 + (L11 − L12)ky]

]
eky cos(kx),

ε(1)
yy =

[
α1[2L12 + (L12 − L11)ky] + β1[L12 + L11 + (L12 − L11)ky]

]
eky cos(kx),

ε(1)
xy = L33

[
α1(1 + ky) + β1ky

]
eky sin(kx). (4.24)

Further, by (4.19) the boundary traction on the nominal surface ∂B0 is given by

p(2) = −h0∂y(C∇u(1))e2 + h0x(C∇u(1))e1 +
1

2
h2

0x(C∇u(0))e2 − h0xxh0xσ
0
sse1, (4.25)

where all derivatives are evaluated at y = 0. Below we evaluate the right hand side of the above
equation term by term. First, by (4.23) we have that on ∂B0 (i.e., y = 0),[

σ(1)
xx,y, σ

(1)
yy,y, σ

(1)
xy,y

]
=
[
(3α1 + 2β1)k cos(kx), −α1k cos(kx), (2α1 + 2β1)k sin(kx)

]
. (4.26)

Therefore,

−h0∂y(C∇u(1))e2 = −(2α1 + 2β1)k sin(kx) cos(kx)e1 + α1k cos2(kx)e2,

h0x(C∇u(1))e1 = −(2α1 + β1)k cos(kx) sin(kx)e1 − α1k sin2(kx)e2,

1

2
h2

0x(C∇u(0))e2 = 0,

−h0xxh0xσ
0
sse1 = β1k cos(kx) sin(kx)e1,

and hence

p(2)
x = α2 sin(2kx), p(2)

y = β2 cos(2kx), (4.27)

where α2 = −(2α1 + β1)k = 2k2ε∞xx/L11 + k3τ0 and β2 = kα1 = −k2ε∞xx/L11. Comparing (4.27)
with (4.22), we obtain the second order stress field, determined by the boundary value problem
(3.3) and (3.4), by simply replacing (α1, β1) by (α2, β2) and k by 2k:

σ(2)
xx =

[
α2(2 + 2ky) + β2(1 + 2ky)

]
e2ky cos(2kx),

σ(2)
yy = −

[
α22ky + β2(2ky − 1)

]
e2ky cos(2kx), (4.28)

σ(2)
xy =

[
α2(1 + 2ky) + β22ky

]
e2ky sin(2kx).

The associated second-order strain field follows from the constitutive relation (4.1). In particular,

ε(2)
xx =

[
α2[2L11 + 2ky(L11 − L12)] + β2[L11 + L12 + 2ky(L11 − L12)]

]
e2ky cos(2kx). (4.29)
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To calculate surface elastic energy, we evaluate the surface strain on ∂B and express it in the frame
{t1, t2, t3 = ez}. By (4.6), (4.7) and (4.3), direct calculations show

∇u
∣∣∣
y=h(x)

= εsst1 ⊗ t1 + · · · , (4.30)

and

εss = t1 ·Ht1 = (NTHN)11

= [H0 + δ(H1 + WH0 + H0WT ) + δ2(H2 + WH1 + H1WT − h2
0xH

0)]11 + o(δ2)

=: ε(0)
ss + δε(1)

ss + δ2ε(2)
ss + o(δ2), (4.31)

where Hk shall be evaluated at y = 0 and, by (4.17), (4.24), (4.29), we have

ε(0)
ss = H0

11 = ε∞xx, ε(1)
ss = H1

11 =
[
α12L11 + β1(L11 + L12)

]
cos(kx),

ε(2)
ss = H2

11 + h0x(H1
12 +H1

21)− h2
0xH

0
11 (4.32)

=
[
α22L11 + β2(L11 + L12)

]
cos(2kx)

+[(3L11 − L12)α1 + 2L11β1]k cos2(kx)− (2L33kα1 + k2ε∞xx) sin2(kx).

As discussed in §3 (cf., (3.5)-(3.7)), our homogenization scheme requires calculation of the total
energy under the application of a far-field uniform strain. Since the domain is infinite, in the
state of plane strain or plane stress, and invariant under a translation of wavelength λ = 2π/k
in ex-direction, we shall restrict our integration domain to the semi-infinite tube-like domain T =
(0, λ)×(−∞, h(x)) for the half-space with rough surface, and T 0 = (0, λ)×(−∞, 0) for the nominal
flat half-space. By our solutions up to the second-order, i.e., (4.16), (4.23), (4.28) and (4.31) we
now evaluate the actual total energy (cf., (3.5))

Eact =
1

2λ

∫
T

[∇u ·C∇u−∇u(0) ·C∇u(0)] +
1

λ

∫
ST

[ 1

2
∇u ·Cs∇u +∇u · S0

s + γ
]

=: I + J, (4.33)

where ST = {(x, y) : y = h(x), x ∈ (0, λ)} is the rough surface on the semi-infinite tube T .
Due to the degeneracy of surface stiffness tensor (cf., (2.4)) and the assumption of plane strain

or plane stress, we find that for any strain tensor H with surface strain ε = t1 ·Ht1 within xy-plane,

H ·CsH = ksε2, (4.34)

where

ks = 2µs + λs (plane strain) or 2µs(1 + ν2) + λs(1− ν)2 (plane stress). (4.35)

Further, it will be convenient to introduce vector fields s(i) = [σ
(i)
xx, σ

(i)
yy ,
√

2σ
(i)
xy ] formed by compo-

nents of the ith-order stress fields (i = 1, 2). Direct calculation verifies

∇u(i) ·C∇u(i) = s(i) · Ls(i) = L · (s(i) ⊗ s(i)). (4.36)
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Then, the right hand side of (4.33) can be rewritten as

I = δI1 + δ2I2 + o(δ2), J = J0 + δJ1 + δ2J2 + o(δ2),

I1 =
1

λ

∫
T
∇u(1) ·C∇u(0),

I2 =
1

λ

∫
T

[
∇u(2) ·C∇u(0) +

1

2
∇u(1) ·C∇u(1)

]
, (4.37)

J0 =
1

λ

∫
ST

[
1

2
ks(ε(0)

ss )2 + τ0ε(0)
ss + γ], J1 =

1

λ

∫
ST

ε(1)
ss (ksε(0)

ss + τ0),

J2 =
1

λ

∫
ST

[
ε(2)
ss (ksε(0)

ss + τ0) +
1

2
ks(ε(1)

ss )2
]

The above integrals can be evaluated term by term as follows. First, since the length of an infinites-

imal segment on ST is given by ds = Γ(δ, x)dx and Γ(δ, x) =
√

1 + δ2k2 sin2 kx ≈ 1+ 1
2δ

2k2 sin2 kx,
we have

J0 =
1

λ

∫ λ

0
[

1

2
ks(ε(0)

ss )2 + τ0ε(0)
ss + γ]Γ(δ, x) ≈ [

1

2
ks(ε∞xx)2 + τ0ε∞xx + γ](1 +

δ2k2

4
). (4.38)

To evaluate I1 and J1, it is sufficient to compute terms up to the order of δ. By (B.1) we obtain

I1 =
1

λ

∫ λ

0

∫ h(x)

−∞

ε∞xx
L11

ε(1)
xx dydx =

δε∞xx
2L11

[2L11α1 + β1(L11 + L12)] + o(δ)

= δ
[
− k(ε∞xx)2

L11
− k2(L11 + L12)τ0ε∞xx

2L11

]
+ o(δ), (4.39)

J1 =
1

λ

∫ λ

0
ε(1)
ss (ksε(0)

ss + τ0)Γ(δ, x) = o(δ).

Finally, for I2 and J2 it is sufficient to calculate terms up to the order of 1. Since

1

λ

∫
T
∇u(2) ·C∇u(0) =

1

λ

∫ λ

0

∫ 0

−∞
∇u(2) ·C∇u(0) + o(1) = o(1), (4.40)

by (B.2) we find

I2 =
1

λ

∫
T

1

2
∇u(1) ·C∇u(1) + o(1) =

1

λ

∫
T

1

2
L · (s(i) ⊗ s(i)) + o(1) =

1

2
L ·M∗(k) + o(1),

J2 =
1

2
k2[ε∞xx(

2L33 + L12

L11
− 4)− 2L11τ

0k](ksε∞xx + τ0) (4.41)

+
k2ks

4
[2ε∞xx + kτ0(L11 + L12)]2 + o(1).

where

M∗(k) :=
1

λ

∫ λ

0

∫ h(x)

−∞
s(1) ⊗ s(1)dydx (4.42)

=
k

4


5(ε∞xx)2

2L2
11

+ 2kτ0(ε∞xx)
L11

+ k2(τ0)2

2
(ε∞xx)2

2L2
11

+ 2kτ0(ε∞xx)
L11

+ k2(τ0)2

2

(ε∞xx)2

2L2
11

+ 2kτ0(ε∞xx)
L11

+ k2(τ0)2

2
(ε∞xx)2

2L2
11

+ 2kτ0(ε∞xx)
L11

+ 5k2(τ0)2

2

(ε∞xx)2

L2
11

+ k2(τ0)2

 ,
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and other components of M∗ are not computed since they do not contribute in the product L ·M∗.
By (3.6) and (3.7), we define the effective properties of the nominal flat surface as

Eact = Eeff =:
1

λ

∫ λ

0

[ 1

2
(ks)eff(ε(0)

xx )2 + ε(0)
xx (τ0)eff + γeff

]
. (4.43)

By (4.33), (4.38) and (4.43), we find the effective properties of the nominal flat surface to be

γeff = γ + δ2
[
k2γ

4
+ k3 (τ0)2

8
(−5L11 + L12 + L33) + k4k

s(τ0)2

4
(L11 + L12)2

]
,

(τ0)eff = τ0 + δ2τ0
[
k2(−7

4
+
L33

L11
+

L12

2L11
) + k3ksL12

]
, (4.44)

(ks)eff = ks + δ2
[
k(− 5

4L11
+
L12 + L33

4L2
11

) + k2ks(−7

4
+

2L33 + L12

L11
)
]
.

By the assumption (4.13), the last terms in the above equations can be neglected compared to the
remaining ones inside the bracket. Inserting (4.2) into the above equations, we obtain the effective
properties in terms of the familiar isotropic elastic constants:

• plane strain (µ = E/2(1 + ν) is the shear modulus):

γeff = γ + δ2
[
k2γ

4
− k3(τ0)2 (1− ν)

4µ

]
,

(τ0)eff = τ0
[
1− δ2k2 3− 5ν

4(1− ν)

]
, (4.45)

(ks)eff = ks − δ2k
2µ

1− ν
;

• plane stress:

γeff = γ + δ2
[
k2γ

4
− k3(τ0)2 1

2E

]
,

(τ0)eff = τ0
[
1− δ2k2 3− 2ν

4

]
, (4.46)

(ks)eff = ks − δ2kE.

We remark that the above solutions for a particular loading condition, i.e., a uniaxial remote
stress σ∞e1 ⊗ e1 at infinity, are insufficient to determine the full effective surface elasticity tensor
Ceff
s or effective residual surface stress tensor (S0

s)
eff defined by (3.7). By (4.21), we identify the

zeroth order surface strain tensor as given by ε
(0)
xx Ĥ, and in the basis {t1, ez} the tensor Ĥ is given

by

Ĥ =

[
1 0
0 0

]
(plane strain) or

[
1 0
0 −ν

]
(plane stress).

By (3.7), (4.21) and (4.43) we identify the following relations

(ks)eff = Ĥ ·Ceff
s Ĥ, (τ0)eff = (S0

s)
eff · Ĥ.

Finally, it is worthwhile noticing that the effective properties are in fact independent of the second
order solution which is by no means obvious a priori.
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4.3 General roughness

We now consider a general roughness profile. Assume h(x) = δh0(x) with h0(x) ∼ 1, δ << 1.
By choosing a large enough Λ > 0, we may without loss of generality assume h0(x) is even and a
periodic function with period Λ. In another word, the roughness is statistically invariant over a
lengthscale of Λ. By Fourier analysis we have (K+ = 2π

Λ {1, 2, · · · })

h0(x) =
∑
m∈K+

ĥ0(m) cos(mx), ĥ0(m) =
2

Λ

∫ Λ

0
h0(x) cos(mx)dx. (4.47)

It will be useful to introduce constants which are properties of the roughness profile h0(x):

Ω(i) =
∑
m∈K+

mi|ĥ0(m)|2. (4.48)

Applying the same procedure in the previous section for each mode m ∈ K+, we obtain the
perturbed stress fields as in (4.23) and (4.28) with k being replaced by m, and

α1 = −ĥ0(m)m
ε∞xx
L11

, β1 = −ĥ0(m)m2τ0,

α2 = −(2α1 + β1)m, β2 = mα1.

To evaluate the actual elastic energy, from (4.33)-(4.41) and Parseval’s theorem we observe that dif-
ferent modes do not interact in the sense that the integrals defined in (4.37) are simply a summation
of all modes:

I1 = δ
∑
m∈K+

[
− |ĥ0(m)|2m(ε∞xx)2

L11
− |ĥ0(m)|2m

2(L11 + L12)τ0

2L11
ε∞xx

]
+ o(δ),

I2 =
∑
m∈K+

1

2
|ĥ0(m)|2L ·M∗(m) + o(1),

J0 =
∑
m∈K+

[
1

2
ks(ε∞xx)2 + τ0ε∞xx + γ](1 +

δ2m2

4
|ĥ0(m)|2), J1 = o(δ),

J2 =
∑
m∈K+

{
1

2
|ĥ0(m)|2m2[ε∞xx(

2L33 + L12

L11
− 4)− 2L11τ

0m](ksε∞xx + τ0)

+|ĥ0(m)|2m
2ks

4
[2ε∞xx +mτ0(L11 + L12)]2

}
+ o(1).

Therefore, the effective properties of the nominal flat surface for a general rough surface are given
by

γeff = γ + δ2
[
Ω(2)γ

4
+ Ω(3) (τ0)2

8
(−5L11 + L12 + L33)

]
,

(τ0)eff = τ0 + δ2τ0
[
Ω(2)(−7

4
+
L33

L11
+

L12

2L11
)
]
, (4.49)

(ks)eff = ks + δ2Ω(1)(− 5

4L11
+
L12 + L33

4L2
11

).

14



4.4 Random roughness

We now consider an ensemble of random surfaces. Assume that

〈h0(x)〉 = 0, 〈h0(x1)h0(x2)〉 = κ(|x1 − x2|) ∀x, x1, x2 ∈ R, (4.50)

where 〈 〉 denotes the ensemble average, and κ : R→ R is referred to as the autocorrelation function.
Typically, the autocorrelation function κ(t) is even, smooth and negligible if t > lc, where lc is the
correlation length. The autocorrelation function and correlation length are statistical properties
of roughness which are experimentally measurable. Without loss of generality, we further assume
every realization of random roughness h0(x) is even and periodic with period Λ >> lc. To find the
ensemble average of the effective properties, by (4.49) we need to evaluate 〈Ω(i)〉 for i = 1, 2, 3. To
this end, we introduce the spectral density of fluctuation S(k) defined by

S(k)Mk =
∑

k<m<k+Mk

〈|ĥ0(m)|2〉. (4.51)

By Wiener-Khinchin theorem (Van Kampen, 2007; p. 59), in the limit Λ → +∞ we have (cf.,
Appendix C)

S(m) =
2

π

∫
R
κ(t) exp(−imt)dt =

2

π
κ̂(m). (4.52)

where κ̂(m) =
∫
R κ(t) exp(−imt)dt is the Fourier transformation of κ(t). Therefore, by (4.51) the

moments Ω(i) defined by (4.48) are given by

Ω(j) =

∫ ∞
0

mjS(m)dm =
2

π

∫ ∞
0

mj κ̂(m)dm. (4.53)

By the inversion theorem, κ(j)(0) = 1
2π

∫
R(im)j κ̂(m)dm, and hence for even integer 2j,

2

π

∫ ∞
0

m2j κ̂(m)dm =
1

π

∫
R
m2j κ̂(m)dm = (−1)j2κ(2j)(0).

For an odd integer 2j+ 1, a simple formula for Ω(2j+1) as above is not available; one has to specify
the autocorrelation function κ(t) and compute it by (4.53).

As an example, assume the autocorrelation function is a Gaussian function

κ(t) = exp(− t2

2l2c
),

where lc can be identified as the correlation length. By definition the above equation implies that
the standard deviation of roughness

√
〈h2(x)〉 = δ

√
〈h2

0(x)〉 = δ
√
κ(0) = δ. Then the Fourier

transformation of κ(t) is given by

κ̂(m) = lc
√

2π exp(− l
2
cm

2

2
),

and hence

Ω(1) =
2

lc

√
2

π
, Ω(2) =

2

l2c
, Ω(3) =

4

l3c

√
2

π
.
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Inserting the above equation into (4.49) and in terms of the familiar elastic constants, the effective
surface properties are given by (η = δ/lc)

• plane strain:

γeff = γ + η2
[γ

2
− (τ0)2 (1− ν)

µlc

√
2

π

]
,

(τ0)eff = τ0
[
1− η2 3− 5ν

2(1− ν)

]
, (4.54)

(ks)eff = ks − η2 4µlc
1− ν

√
2

π
;

• plane stress:

γeff = γ + η2
[γ

2
− (τ0)2 2

Elc

√
2

π

]
,

(τ0)eff = τ0
[
1− η2 3− 2ν

2

]
, (4.55)

(ks)eff = ks − η22Elc

√
2

π
.

5 Discussion, Atomistic Validation and Applications

We can use the simple expressions we have derived to make some assessments on the effect of
roughness on the surface properties. We take Copper as an example, with Young’s modulus E
of 115 GPa, Poisson’s ratio ν of 0.34, surface stress τ0 ≈ 1.04N/m and surface elastic constant
ks ≈ −3.16N/m of the (001) crystal face (Shenoy, 2005). If we consider sinusoidal roughness with
δk = 0.2 and wave length λ around 10nm, then the wave number k = 2π

λ ∼
2π

10−8 = 6.28× 108m−1,
and by (4.45) and (4.46) we have (for plane stress case):

(γ)eff = 1.01γ, (τ0)eff = 0.98τ0 (ks)eff = −10.485N/m. (5.1)

So (τ0)eff for this rough surface is barely 2 percent less than the pristine value, τ0. However, we
observe a dramatic change in (ks)eff from the flat surface value of −3.16N/m! Therefore, we can
conclude that while residual surface stress is hardly affected by the roughness, the surface elastic
parameters can change appreciably. It should be noted here that surface roughness can even cause
a change of sign in surface elastic constants depending on the extent of the roughness. Finally, as
evident from the expressions for the both the periodic and random roughness case, even if the bare
surface possesses zero surface elasticity i.e. ks ≈ 0 roughness will “create” surface elasticity i.e.
effective value of ks will be non-zero.

Our theoretical predictions are, qualitatively, consistent with atomistic simulations we con-
ducted on Silver. The sample geometry is shown in Figure (3). Further details of the atomistic
simulations may be found in Mohammadi and Sharma (2012).

For the Silver cantilever nano-beam, we chose roughness with 0.215 nm amplitude and 1.636
nm wavelength. The bare values of surface stress and surface elastic constants are, respectively,
0.023 and -0.168 eV/A2. We find (τ0)eff to be 0.01895 eV/A2 from atomistics while our theoretical
calculations predict 0.0225. On the other hand, ks undergoes a larger change—atomistics predict
-0.506 eV/A2 qualitatively consistent with our theoretical prediction: -0.367 eV/A2. Considering
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Figure 3: Atomistic calculations to extract the effect of roughness on surface elasticity (Mohammadi
and Sharma, 2012)

that ours is a perturbation approach and the other assumptions we have made (e.g. isotropy), only
a qualitative match can be expected in comparison with atomistics.

Weissmuller and Duan (2008) have shown that the response of the curvature of cantilevers to
changes in their surface stress in the presence of the surface roughness is different from nominally
planar surfaces. Considering surface residual stress for cantilevers, they concluded that deliberate
structuring of the surface allows the magnitude and even its sign to be tuned. They have concluded
that bending of the substrate is controlled by changes in in-plane component of the surface-induced
stress, T only. Their calculation shows that T for the isotropic solid with a nearly planar surface
θ2 � 1 (assuming isotropy) is equal to

T =
〈f〉s
h1

(
1− v1

1− v1
〈θ2〉

)
, (5.2)

where f is surface residual stress and v1 is the Poisson’s ratio. In their calculations, they assumed
that f depends on the surface orientation but this assumption does not have any contribution
in creating the (1 − v1

1−v1 〈θ
2〉) term that shows that the apparent action of f will be reduced by

a geometric effect that scales with the root-mean-square of θ. We note here that for sinusoidal
roughness 〈θ2〉 is δk/2. Their model is different than ours and accordingly we don’t make any
further comparisons beyond noting that both our works are predicated on the “small roughness”
assumption and that physical conclusions shall be used with caution when this assumption is
violated.

Nanofabricated cantilever structures have been demonstrated to be extremely versatile sensors
and have potential applications in physical, chemical, and biological sciences. Adsorption on surface
of such a sensor may induce mass, damping, and stress changes of the cantilever response. One
cantilever sensor technique is to monitor changes in the cantilever resonance frequency. The effect
of surface stress on the resonance frequency of a cantilever have been modeled analytically by Lu
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et al. (2005) by incorporating strain-dependent surface stress terms into the equations of motion.
Consider a cantilever used as a sensor. The experimental quantity measured is the surface stress

difference, Mσs = σsu − σsl , where σsu and σsl are the surface stresses on the upper and the lower
surfaces, respectively. In the isotropic case, the surface stresses may be written as

σsu = τ0
u + ksu(εss)u and σs

l = τ0
l + ks

l (ε
ss)l, (5.3)

where τ0 is the strain-independent surface stress, ks is the surface elastic modulus, εss is the surface
strain measured from the pre-stressed configuration, and the subscripts u and l always refer to the
upper and lower surface, respectively. The surface stress difference can be written as

Mσs = Mσ0 − Mσl, (5.4)

with Mσ0 = τ0
u − τ0

l and Mσl = ksu(εss)u−ksl (εss)l. While the strain-independent part of the surface
stress, Mσ0 can have an impact on the resonance frequency (in a nonlinear setting), it is expected
to be small. The strain-dependent part (i.e. surface elasticity) definitely will change the resonance
frequency and can be expressed as

Q ≡ (ωs)
2 − (ω0)2

(ω0)2
= 3

ksu + ksl
Eh

, (5.5)

where ω0 is the fundamental resonance frequency without considering surface elasticity, ωs is the
resonance frequency with surface stresses acting, h is the thickness and E is Young’s modulus. Liu
and Rajapakse (2010) have also derived a similar expression

To compare the change in resonance frequency of cantilevers with rough surfaces, we consider
a beam that has a sinusoidal rough surface on top and flat surface on the bottom. We have

ksu = (ks)eff = ks − δ2kE (5.6)

for top surface and ksl = ks for the lower surface. Then the change in resonance frequency can be
obtained as

Qrough =
3

Eh

(
2ks − δ2kE

)
(5.7)

Compared to a cantilever with upper and lower flat surface with resonance frequency

Q =
3

Eh
(2ks) (5.8)

We stress here that this calculation is approximate and intended to simply demonstrate the use of
our results. A rigorous calculation may yield additional terms if roughness is directly modeled in
calculation of the frequency shift as opposed to using homogenized effective properties. Keeping
this caveat in mind, we can infer that the frequency shift will decrease significantly or even, in some
cases, change sign. For instance, in case of copper (001) crystal face (Shenoy, 2005), if we consider
a sinusoidal roughness with ak = 0.2 and wave length of 10 nm on the top surface of the cantilever,
the change of resonance frequency can be calculated to be: Qrough = 3

Eh(−13.64) from its value of
Q = 3

Eh(−6.32). So quantitatively, the square of resonance frequency is shifted by nearly a factor
of 2.

As another example, we consider aluminum with Young’s modulus E of 70 GPa, Poisson’s ratio
v of 0.35, τ0 ≈ 0.91 N/m andks ≈ 4.53 N/m for the (111) crystal face (Shenoy, 2005). Then the
result for the rough case is 3

Eh(5.87) as opposed to the flat case of 3
Eh(9.06).
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In summary, we have presented simple expressions for the homogenized surface stress and sur-
face elasticity for both randomly and periodically rough surfaces. Residual surface stress does not
appear to be significantly affected by the presence of roughness although we do notice a dramatic
change in the surface elastic modulus. The latter for example, as we demonstrated through simple
illustrative quantitative examples, should have significant impact on the way sensing data based
on surface effects is interpreted. We finally note an interesting observation that even if the bare
surface has a zero surface elasticity modulus, roughness will endow it with one.
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Appendix A: Elasticity solution to two-dimensional isotropic half-space

Here we recall the classic solution to the elasticity problem of a two dimensional isotropic flat half-
space B0 = {(x, y) : y < 0} subject to an applied traction p = (px, py) on ∂B0 = {(x, y) : y = 0}.
Let

(p̂x(m), p̂y(m)) =

∫
R

(px(x), py(x))e−imxdx

be their Fourier transformations. Then the solutions to the stress and stain fields are given by
(Asaro and Lubarda, 2006, pp. 229-232)

σxx(x, y) =
1

2π

∫
R

[p̂x(m)(−2
|m|
im

+ imy) + p̂y(m)(1 + |m|y)]eimx+|m|ydm,

σyy(x, y) =
1

2π

∫
R

[−imp̂x(m)y + p̂y(m)(1− |m|y)]eimx+|m|ydm, (A.1)

σxy(x, y) =
1

2π

∫
R

[p̂x(m)(1 + |m|y)− imp̂y(m)y]eimx+|m|ydm.

Appendix B: Evaluation of the selected integrals used in Section 4.2

First, we recall a few identities for η << 1 (which may be verified by Mathematica):

1

2π

∫ 2π

0
sin2 θdθ =

1

2
,

∫ h

−∞
yeydy = eh(−1 + h),

∫ h

−∞
y2eydy = eh(2− h+ h2),

1

2π

∫ 2π

0
eη cos θ cos θdθ =

η

2
+ o(η),

∫ 2π

0
esin θ cos θdθ = 0,∫ 2π

0
eη cos θ(−1 + η cos θ) cos θdθ = o(η).

Therefore,

1

λ

∫ λ

0

∫ h(x)

−∞
kyeky cos(kx)dydx =

1

2π

∫ λ

0
eδk cos(kx)(−1 + δk cos(kx)) cos(kx)dx = o(δ),

1

λ

∫ λ

0

∫ h(x)

−∞
eky cos(kx)dydx =

1

2π

∫ λ

0
eδk cos(kx) cos(kx)dx =

δ

2
+ o(δ),

1

λ

∫ λ

0

∫ h(x)

−∞
ε(1)
xx dydx =

δ

2
[2L11α1 + β1(L11 + L12)] + o(δ). (B.1)
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Further, we notice that for any constants A,B,C,

1

λ

∫ λ

0

∫ h(x)

−∞
(A+B(2ky) + C(2ky)2)e2ky cos2(kx)dydx =

1

4k
(A−B + 2C) + o(1).

Therefore,

1

λ

∫ λ

0

∫ h(x)

−∞
s(1) ⊗ s(1)dydx = M∗

≈ 1

4k

α1(2α1 + β1) + (α1+β1)2

2 α1β1 + (α1+β1)2

2

α1β1 + (α1+β1)2

2 β1(α1 + 2β1) + (α1+β1)2

2
−2β1α1 + (α1 + β1)2

 , (B.2)

where other components of M∗ are not computed since they do not contribute to the product
L ·M∗.

Appendix C: Wiener-Khinchin Theorem

We outline the argument for (4.52) as follows. First, we notice that

〈|ĥ0(m)|2〉 =
4

Λ2

〈∫ Λ

0

∫ Λ

0
h0(x1)h0(x2) exp(im(x1 − x2))dx1dx2

〉
=

4

Λ2

∫ Λ

0

∫ Λ

0
〈h0(x1)h0(x2)〉 exp(im(x1 − x2))dx1dx2

=
4

Λ2

∫ Λ

0

∫ Λ

0
κ(x1 − x2) exp(im(x1 − x2))dx1dx2

=
4

Λ2

∫ Λ

0
dx1

∫ Λ−x1

−x1
κ(t) exp(−imt)dt.

Since κ(t) is negligible if t > lc, in the limit Λ→ +∞ we have

∑
k<m<k+Mk

〈|ĥ0(m)|2〉 =
∑

k<m<k+Mk

2

πΛ

∫ Λ

0
dx1

2π

Λ

∫ Λ−x1

−x1
κ(t) exp(−imt)dt

→ 2

π

∫
R
κ(t) exp(−imt)dt =

2

π
κ̂(m),

which completes the proof of (4.52).
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