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Abstract

We present a rigorous proof of polynomial eigenstress inducing polynomial strain of the same degree
in an ellipsoidal inclusion. The coefficients of the induced polynomial strain are explicitly given
in terms of elliptic integrals. The analogous Eshelby’s tensor for polynomial eigenstress is also
computed, and applied to solve the inhomogeneous problem as an example of applications.

1 Introduction

Since the seminal works of Eshelby (1957; 1961), the inclusion problem has played a critical role in
the development of predictive material models (Mura, 1987; Nemat-Nasser and Hori, 1999). In a
broader physical context, a number of problems of practical interest can be formulated in a similar
form as the Eshelby inclusion problem in linear elasticity, including models in electrostatics, magne-
tostatics, piezoelectrics among many others. The remarkable uniformity property of ellipsoids, i.e.,
uniform eigenstress inducing uniform strain inside the inclusion, allows for explicit and closed-form
predictions to important physical quantities such as stress concentration factor, force and torque on
the inclusion, and effective material properties in the dilute limit which may be extended to finite
volume fractions by the mean-field type theory of Mori-Tanaka (Mori and Tanaka 1973). Motivated
by the uniformity propoerty of ellipsoids, the author and coworkers have recently constructed new
shapes called E-inclusions with similar uniformity property but for different boundary conditions
(Liu et al., 2007; 2008). Much of the analysis based on the Eshelby’s solutions can be applied to
E-inclusions and account for interactions between inclusions (Liu 2009; 2010).

At the advent of modern nanotechnology, there is a renewed interest in the Eshelby inclusion
problems, especially for nonuniform eigenstress. A particular application motivating this work is
to find the force and torque on an ellipsoidal particle subjected to a nonuniform applied field in
electrostatics or magnetostatics or elasticity. This problem arises from a number applications. For
example, in the design of magnetic nanotweezers (Neuman and Nagy 2008; Gosse and Croquette
2002), it is critical to relate the force and torque on the particle with the applied nonuniform
field so as to achieve precise control and manipulation of nano-particles. Also, to understand the
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mechanism of clustering or segregation of particles in a solution, an accurate account of interaction
forces between neighboring particles requires replacing the assumption of uniform induced field by
a nonuniform one in the particle (Sun et al., 2000; Pankhurst et al., 2003). In fracture mechanics,
the micro-crack models in the process zone can no longer be analyzed by the Eshelby’s solutions
(Hori and Nemat-Nasser 1985; 1987).

Asaro and Barnett (1975) presented a generalization of the uniformity property of ellipsoids.
They concluded that for general anisotropic solids a polynomial eigenstrain on an ellipsoidal in-
clusion induces a polynomial strain of the same degree inside the inclusion. Though widely used,
some steps in their argument, e.g., switching the order of integrations for integrands which are not
integrable, may require careful justification. Also, it is peculiar that the argument appears to work
only in three (or odd) dimensional space. For example, in two dimensions the argument requires
evaluating the critical integral

∫
B2

(x′)αδ(k̂ · (x′ − x))dx′ for a circle B2 := {x ∈ R2 : |x| ≤ 1} and

unit vector k̂ = (k̂1, k̂2). Yet, by analogous argument we obtain (k̂⊥ = (k̂2,−k̂1))

∫
B2

(x′)αδ(k̂ · (x′ − x))dx′ =

∫ √1−(k̂·x)2

−
√

1−(k̂·x)2
((k̂ · x)k̂ + sk̂⊥)αds,

which does not yield the desired results that the above integral is a polynomial of x. Similar issues
exist in Mura and Kinoshita (1978).

In this paper we present a rigorous proof of polynomial eigenstress (or eigenstrain) inducing
polynomial strain of the same degree for the homogeneous inclusion problem. Further, the coef-
ficients of the induced polynomial strain are explicitly and systematically calculated in terms of
elliptic integrals. In a similar manner as for uniform eigenstress, the equivalent inclusion method
can then be applied to solve the inhomogeneous inclusion problem subjected to a nonuniform
polynomial far field and to address the problem concerning the interaction between two spherical
inhomogeneities (Moschovidis and Mura, 1975; Rodin and Hwang, 1991). Solutions to the inhomo-
geneous inclusion problems are the foundations of many material models concerning, for example,
composite materials, solid-to-solid phase transformations, cracks and dislocations.

The paper is organized as follows. In § 2 we focus on simple p-harmonic problems. By u-
tilizing spherical symmetry we explicitly solve p-harmonic problems for uniform sources in § 2.1
and nonuniform polynomial sources on a unit ball in § 2.2. In § 2.3 the solutions are extended to
ellipsoids by observing that ellipsoids are linear transformations of the unit ball. In § 3 we solve
the homogeneous Eshelby inclusion problem for general nonuniform polynomial eigenstress, which
is then used to solve the inhomogeneous Eshelby inclusion problem by the analogous equivalent
inclusion mehtod in § 4.

Finally, we remark that although terminologies from linear elasticity are employed for con-
venience, the solution techniques and results apply to problems in electrostatics, magnetostatics
among many other settings where the corresponding fields are governed by second-order linear
elliptic partial differential equations.
Notation. For an n-tuple nonnegative integer index (α1, · · · , αn) and a vector x = (x1, · · · , xn),
we denote by

|α| = α1 + · · ·+ αn, xα = xα1
1 · · ·x

αn
n , Dα

x =
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

The Greek letters α, β, γ will be reserved for such multi-index; γ ≤ α if and only if γi ≤ αi for all
i = 1, · · · , n. The number of different α for fixed |α| = p is given by (p+n−1)!

p!(n−1)! (Hazewinkel, 2001).
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For any function f : Rn → C we denote by f̂ its Fourier transformation:

f̂(k) =

∫
Rn

f(x) exp(−ik · x)dx. (1)

For a nonzero vector k ∈ Rn, denote by k̂ = k/|k| the associated unit vector with components
(k̂1, · · · , k̂n). Also, we recall the Leibniz formula (Rudin 1991, p. 159, 177)

Dα(fg) =
∑
γ≤α

cαγD
α−γfDγg, (2)

where cαγ =
∏n
i=1

αi!
γi!(αi−γi)! .

2 Solutions to the p-harmonic problems and their implications

2.1 Uniform sources on a ball

We first consider problems with uniform sources supported on a unit ball. Let Bn ⊂ Rn be the
unit ball centered at the origin and χBn (= 1 on Bn; = 0 otherwise) be the characteristic function
of Bn. We shall modify the source such that all integrals arising from Fourier transformations can
be interpreted in the sense of Riemann or Lebesgue (Rudin, 1987). For any η > 0, let wη : Rn → R
be a smooth function with the following properties:

• Spherical symmetry: wη = wη(r), r = |x|,

• wη(r) = 1 if r ≤ 1 and wη(r) = 0 if r > 1 + η,

• As η → 0,
∫
Rn |wη − χBn |q → 0 for any q ≥ 1.

Using integration by parts and change of variables, we can easily show that the Fourier transfor-
mation ŵη is smooth, real-valued, spherically symmetric, and decays faster than any polynomial
(Rudin, 1991, p. 184). For an integer q < n, define a function Λqη : R→ C as

Λqη(t) :=
1

(2π)n

∫ ∞
0

kn−q−1 exp(ikt)ŵη(k)dk = Λqηe(t) + iΛqηo(t), (3)

where subscript “e” (“o”) refers to “even” (“odd”),

(Λqηe(t), Λqηo(t)) =
1

(2π)n

∫ ∞
0

kn−q−1[cos(kt), sin(kt)]ŵη(k)dk. (4)

It is clear that

Λqηe(t) = Λqηe(−t), Λqηo(t) = −Λqηo(−t). (5)

By differentiation,

d

dt
Λqη(t) = iΛq−1

η (t), i.e.,
d

dt
Λqηe(t) = −Λq−1

ηo (t),
d

dt
Λqηo(t) = Λq−1

ηe (t). (6)

We remark that the functions defined in (3)-(4) are smooth on R and will play a pivotal role in our
subsequent analysis.

3



To explore the properties of Λqη, for any positive integer p we consider the p-harmonic problem

∆pψp = −wη on Rn. (7)

It can be shown that solutions to the above equation exist in

H2p := {u :

∫
Rn

∑
|α|=2p

|Dαu|2 < +∞}, (8)

and that the solution is unique within a polynomial of degree 2p − 1, see Gilbarg and Trudinger
(1983).

By spherical symmetry we seek a special solution that can be written as ψp = ψp(r) and rewrite
(7) as the following ordinary differential equation:

[
1

rn−1

d

dr
rn−1 d

dr
]pψp(r) = −wη(r) ∀ r > 0. (9)

If n > 2p, we can enforce the boundary condition

ψp(r)→ 0 as r → +∞, (10)

which eliminates the arbitrary polynomial of degree 2p − 1. In other words, if n > 2p, equations
(9)-(10) admit a unique solution which belongs to H2p and satisfies (7).

It will be useful to explicitly solve (9)-(10) for n > 2p. The results are as follows:

Lemma 1 If 2p < n, as η → 0 the solution to (9)-(10) is given by

ψp(r) =

{∑p
s=0A

p,s
n r2s if r ≤ 1,∑p−1

s=0 B
p,s
n r2s+2−n if r > 1,

(11)

where the coefficients Ap,sn and Bp,s
n are determined recursively by

A1,1
n = − 1

2n
, A1,0

n =
1

2(n− 2)
, B1,0

n =
1

n(n− 2)
,

Ap,sn = 2s(2s+ n− 2)Ap−1,s−1
n , Bp,s

n = 2s(2s+ 2− n)Bp−1,s−1
n , (12)

p∑
s=0

Ap,sn =

p−1∑
s=0

Bp,s
n ,

p∑
s=1

2sAp,sn =

p−1∑
s=0

(2s+ 2− n)Bp,s
n .

Proof: As η → 0, wη → 1 on Bn and vanishes otherwise. In this limit, by induction on p
we conclude that the solution to (9)-(10) is necessarily given by a finite series of form (11). To
determine the coefficients in (11), we first notice that if p = 1,

ψ1(r) =

{
− 1

2nr
2 + 1

2(n−2) if r ≤ 1,
1

n(n−2)rn−2 if r > 1,

which confirms (12)1. By (7) we have ∆ψp = ψp−1, and upon differentiating (11) we obtain (12)2.
Finally, the continuities of ψp and d

drψp at r = 1 imply (12)3.
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We remark that the above recursive formulae (12) are sufficient to determine all coefficients
Ap,sn and Bp,s

n . In particular, we have

Ap,pn =
−1

2pp!
∏p
s=1(2s− 2 + n)

,

and hence

Dα
xψp(r) =

−1

2pp!
∏p
s=1(2s− 2 + n)

Dα
xr

2p ∀ r < 1 if |α| = 2p. (13)

Further, since the solution to (7) in H2p is unique within a polynomial of degree 2p− 1, it can be
shown that equation (13) applies to any p ≥ 1 and n ≥ 2.

On the other hand, by Fourier transformation we can formally represent the solution to (7) in
H2p as

ψp(x) =
−1

(2π)n

∫
Rn

1

i2p|k|2p
exp(ik · x)ŵη(k)dk, (14)

and hence for any multi-index α with |α| > 2p− n,

Dα
xψp(x) =

−i|α|−2p

(2π)n

∫
Rn

k̂αk|α|−2p exp(ik · x)ŵη(k)dk

=
−i|α|−2p

(2π)n

∫
Sn−1

k̂α
∫ ∞

0
k|α|−2p+n−1 exp(ikk̂ · x)ŵη(k)dkdµ(k̂)

= −i|α|−2p

∫
Sn−1

k̂αΛ2p−|α|
η (k̂ · x)dµ(k̂). (15)

If |α| = 2p, by (13) we see that Dα
xψp(x) is uniform on Bn, and hence

−
∫
Sn−1

k̂αΛ0
η(k̂ · x)dµ(k̂) = −

∫
Sn−1

k̂αΛ0
ηe(k̂ · x)dµ(k̂) = −ωn

∫
Sn−1

k̂αdµ(k̂) x ∈ Bn, (16)

where

ωn = Λ0
ηe(0) =

1

(2π)n

∫ ∞
0

kn−1ŵη(k)dk.

Upon evaluating (15) for ∆p at x = 0, we find that

−1 = ∆pψ(x)
∣∣∣
x=0

= −ωn
∫
Sn−1

dµ(k̂) =⇒ ωn =
1

Area( Sn−1)
. (17)

Therefore, by (13) and (15) we have that if |α| = 2p,∫
−
Sn−1

k̂αdµ(k̂) =
1

2pp!
∏p
s=1(2s− 2 + n)

Dα
xr

2p,

where
∫
− denotes the average value of the integrand on the integration domain. In particular, for

α = (2p, 0, · · · , 0) we have∫
−
Sn−1

k̂2p
1 dµ(k̂) =

(2p)!

2pp!
∏p
s=1(2s− 2 + n)

. (18)

Since equation (16) holds for any α with |α| = 2p (p = 1, 2, · · · ), one may see that Λ0
ηe(t) is,

in fact, constant for t ∈ (−1, 1). This can be used to show the remarkable uniformity properties
of ellipsoids in the context of second-order constant-coefficient partial differential equations. For
future convenience, we summarize below.
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Lemma 2 Let Λqη,Λ
q
ηe,Λ

q
ηo : R→ C be defined as in (3) and (4). Then for any t ∈ (−1, 1),

(i) if q = 0, Λ0
ηe(t) = ωn;

(ii) if q < 0 is even, Λqηe(t) = 0; if q < 0 is odd, Λqηo(t) = 0;

(iii) if 0 ≤ q = 2p < n,

Λ2p
ηe(t) =

p∑
m=0

Cp,mηe
ωn

(2m)!
t2m, Λ2p−1

ηo (t) =

p−1∑
m=0

Cp,mηo
ωn

(2m+ 1)!
t2m+1, (19)

where the coefficients Cp,mηe and Cp,mηo satisfy

Cp,mηe = −Cp,m−1
ηo = −Cp−1,m−1

ηe . (20)

Proof: First, we notice that (ii) and (iii) follow from (i), (5) and (6). The requirement that q < n
arises from the convergence of the integrals, i.e., (3) and (4). Property (iii) might prevail if the
definition of the function Λqη could be appropriately generalized for q ≥ n, which, however, will not
be pursued here.

To show (i), we simply notice that (16) holds for any α with |α| = 2p (p = 1, 2, · · · ). For
any x ∈ Bn, k̂ 7→ Λ0

ηe(k̂ · x) is even and smooth on Sn−1 while the vector space spanned by

{k̂α : |α| = p, p = 1, 2, · · · } is dense in C(Sn−1). Therefore, by the localization theorem we
conclude that Λ0

ηe(k̂ · x) is independent of k̂, and hence Λ0
ηe(t) is constant for t ∈ (−1, 1).

It will be of interest to explicitly compute the coefficients Cp,mηe and Cp,mηo defined in (19). First,
by (20), it is sufficient to determine all Cp,mηe and Cp,mηo if Cp,0ηe are known for p ≥ 0. By (i) of
Lemma 2, C0,0

ηe = 1. Further, by (14) we find that if 2p < n,

ψp(x) =
−1

(2π)n

∫
Rn

1

i2p|k|2p
exp(ik · x)ŵη(k)dk = (−1)p+1

∫
Sn−1

Λ2p
ηe(k̂ · x)dµ(k̂).

Therefore, by (12)1 we have that as η → 0,

Cp,0ηe → (−1)p+1ψp(x)
∣∣∣
x=0

= (−1)p+1Ap,0n , ( if p = 1) = A1,0
n =

1

2(n− 2)
. (21)

2.2 Nonuniform polynomial sources on a ball

The problem defined by (7) essentially concerns a uniform source term supported on the unit ball
Bn. We now consider a nonuniform polynomial source term. Since our interested problems are
linear, it is sufficient to consider monomial xα sources on the unit ball. In parallel to (7) we consider
the p-harmonic problem

∆pψp = −xαwη on Rn. (22)

It can be shown that the above equation admits a solution in H2p, and the solution is unique within
a polynomial of degree 2p− 1 (Gilbarg and Trudinger, 1983). In other words, all derivatives Dα

xψp
are uniquely defined if |α| ≥ 2p.

By Fourier transformation we can formally represent the solution as

ψp(x) =
−1

(2π)n

∫
Rn

1

(−i)|α|i2p|k|2p
exp(ik · x)Dα

kŵη(k)dk,
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and hence any β-derivative of ψp with |β| > 2p+ |α| − n can be represented as

Dβ
xψp(x) =

(−1)|α|+1i|β|−|α|−2p

(2π)n

∫
Rn

kβ

|k|2p
exp(ik · x)Dα

kŵη(k)dk

=
−i|β|−|α|−2p

(2π)n

∫
Rn

Dα
k

[ kβ

|k|2p
exp(ik · x)

]
ŵη(k)dk

=
−i|β|+|γ|−|α|−2p

(2π)n

∑
γ≤α

cαγx
γ

∫
Rn

Dα−γ
k

[ kβ

|k|2p
]

exp(ik · x)ŵη(k)dk

= −i|β|+|γ|−|α|−2p
∑
γ≤α

cαγx
γ

∫
Sn−1

gβα−γ(k̂)Λ2p+|α|−|γ|−|β|
η (k̂ · x)dµ(k̂), (23)

where the second equality is obtained by integrating by parts, the third follows from the Leibniz
formula (2), and

gβα−γ(k) = |k|2p+|α|−|γ|−|β|Dα−γ
k

[ kβ

|k|2p
]

= gβα−γ(k̂). (24)

If |β| = 2p + |α|, gβα−γ(k̂) is even (odd) if |γ| is even (odd), and hence by Lemma 2 and (23) we
have

Dβ
xψp(x) = −

∫
Sn−1

Dα
k

[ kβ

|k|2p
]
Λ0
ηe(k̂ · x)dk̂ = −

∫
−
Sn−1

Dα
k

[ kβ

|k|2p
]
dµ(k̂) ∀x ∈ Bn. (25)

The above equation implies that ψp(x) is necessarily a polynomial of degree 2p + |α| in the unit
ball Bn.

2.3 Extensions to ellipsoidal sources

Let Ω := {x :
∑n

i=1 x
2
i /a

2
i < 1} with 0 < a1 ≤ a2 · · · ≤ an be an ellipsoid. We introduce the

transformation:

w′η(x) = wη(y), y = A−1x, (26)

where A = diag[a1, · · · , an]. It is clear that the source function w′η : Rn → R has the following
properties:

• w′η(x) = 1 if x ∈ Ω and wη(x) = 0 if x /∈ Ω and dist(x, ∂Ω) := miny∈∂Ω |x− y| > anη .

• The Fourier transformation of w′η satisfies

ŵ′η(k) =

∫
Rn

w′η(x) exp(−ix · k)dx = det(A)ŵη(Ak) = det(A)ŵη(|Ak|). (27)

In parallel to (22) we consider the p-harmonic problem

∆pψp = −xαw′η on Rn. (28)

The above equation similarly admits solutions in H2p which are unique within a polynomial of
degree 2p − 1 (Gilbarg and Trudinger, 1983). If |β| > 2p + |α| − n, in analogy with (23) we can
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represent the solution as

Dβ
xψp(x) =

(−1)|α|+1i|β|−|α|−2p

(2π)n

∫
Rn

kβ

|k|2p
exp(ik · x)Dα

kŵ
′
η(k)dk

=
−i|β|+|γ|−|α|−2p

(2π)n

∑
γ≤α

cαγx
γ

∫
Rn

Dα−γ
k

[ kβ

|k|2p
]

exp(ik · x)ŵ′η(k)dk. (29)

Inserting (27) into the integral on the right-hand side of (29) and changing integration variables,
we obtain (cf., (24))∫

Sn−1

gβα−γ(k̂)

∫ ∞
0

kn−1−2p−|α|+|γ|+|β| exp(ikk̂ · x)ŵη(k|Ak̂|)dkdµ(k̂)

=

∫
Sn−1

det(A)gβα−γ(k̂)

|Ak̂|n−2p−|α|+|γ|+|β|

∫ ∞
0

k′n−1−2p−|α|+|γ|+|β| exp(ik′
k̂ · x
|Ak̂|

)ŵη(k
′)dk′dµ(k̂)

= (2π)n
∫
Sn−1

det(A)gβα−γ(k̂)

|Ak̂|n−2p−|α|+|γ|+|β|
Λ2p+|α|−|γ|−|β|
η (

k̂ · x
|Ak̂|

)dµ(k̂). (30)

If |β| = 2p + |α|, gβα−γ(k̂) is even (odd) if |γ| is even (odd), and hence by Lemma 2 and (29) we
have

Dβ
xψp(x) = −

∫
−
Sn−1

det(A)

|Ak̂|n
Dα

k

[ kβ

|k|2p
]
dµ(k̂) ∀x ∈ Ω. (31)

The above equation implies that ψp(x) is again necessarily a polynomial of degree 2p + |α| in the
ellipsoid Ω.

Further, if |α| < n and |β| = 2p, by (30), equation (29) can be rewritten as

Dβ
xψp(x) = −i|γ|−|α|

∑
γ≤α

cαγx
γ

∫
Sn−1

det(A)gβα−γ(k̂)

|Ak̂|n−|α|+|γ|
Λ|α|−|γ|η (

k̂ · x
|Ak̂|

)dµ(k̂). (32)

More explicitly, if |α| = 1, |β| = 2p and n ≥ 2, by Lemma 2 and (32) we have that for x ∈ Ω,

Dβ
xψp(x) = −

∫
−
Sn−1

det(A)

|Ak̂|n
[
(x · k)Dα

k k̂
β + xαk̂β

]
dµ(k̂). (33)

If |α| = 2, |β| = 2p and n ≥ 3, by Lemma 2 and (32), similar calculations yield that for x ∈ Ω,

Dβ
xψp(x) = −

∫
−
Sn−1

det(A)

|Ak̂|n

[
[
1

2
(k̂ · x̂)2 − |Ak̂|2

2(n− 2)
]|k|2Dα

k k̂
β

+
∑

|γ|=1,γ≤α

cαγx
γ(k · x)Dα−γ

k k̂β + xαk̂β
]
dµ(k̂). (34)

We remark that all coefficients associated with polynomials in (33) and (34) are elliptic integrals
and can be conveniently evaluated (see Appendix). In addition, we can apply the above formulae
(32)-(33) to spaces of dimension d ≤ |α| by considering the limit of ellipsoids in a higher-dimensional
space of dimension n = 1 + |α| with some of the semi-axes approaching infinity. Therefore, the
solutions (32)-(33) are actually not restricted to n > |α|.
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3 Solutions to the homogeneous inclusion problem with nonuni-
form polynomial eigenstress

We now consider a second-order linear elliptic system which determines the relevant fields in a num-
ber of physical settings including elasticity, electrostatics and magnetostatics. Let C0 : Rm×n →
Rm×n be a positive semi-definite symmetric tensor satisfying that for some c > 0,

(C0)piqj(a)i(a)j(b)p(b)q ≥ c|a|2|b|2 ∀a ∈ Rn, b ∈ Rm. (35)

The collection of such tensors is denoted by L+. Consider the following problem for u : Rn → Rm,{
div(C0∇u + P∗w′η) = 0 on Rn,
|∇u| → 0 as |x| → ∞,

(36)

where

P∗ ∈ Pq = {P : Rn → Rm×n : every component of P is a polynomial of degree ≤ q}.

We remark that Pq is a linear space of dimension nm
∑q

s=0
(n+s−1)!
(n−1)!s! . In the context of elasticity,

this problem may be recognized as the homogeneous Eshelby’s inclusion problem; C0 (P∗) is the
elastic stiffness tensor (eigenstress).

The following theorem is presented in Asaro and Barnett (1975), Mura and Kinoshita (1978)
and Mura (1987, p. 158) in three dimensions.

Theorem 3 The solution to (36) satisfies that

∇u
∣∣∣
x∈Ω
∈ Pq. (37)

Proof: Since (36) is linear, it is sufficient to show (37) for eigenstresses

P∗ = xαP0 = xα1
1 · · ·x

αn
n P0 ∀P0 ∈ Rn×n. (38)

For the homogeneous problem (36), the method of Fourier analysis can be conveniently used. Let

[D(k)]pq = (C0)piqj(k)i(k)j , [D(k)]−1 = [cofD(k)]T / det(D(k)). (39)

By the first of (36) we find the Fourier transformation of u is given by

û(k) = i|α|+1 [cofD(k̂)]TP0k̂

|k|det(D(k̂))
Dα

kŵ
′
η(k) ∀k ∈ Rn. (40)

Let

hβ(k) =
(k)β[cofD(k)]TP0k

detD(k)
. (41)

Note that hβ(tk) = t|β|−1hβ(k). If |α| < n+ |β|−1, it is legitimate to integrate by parts and obtain

Dβ
xu(x) =

i|β|+|α|+1

(2π)n

∫
Rn

hβ(k) exp(ik · x)Dα
kŵ
′
η(k)dk

= (−1)|α|
i|β|+|α|+1

(2π)n

∫
Rn

Dα
k [hβ(k) exp(ik · x)]ŵ′η(k)dk

= (−1)|α|
i|β|+|α|+|γ|+1

(2π)n

∑
γ≤α

cαγx
γ

∫
Rn

Dα−γ
k hβ(k) exp(ik · x)ŵ′η(k)dk, (42)
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where the last equality follows from the Leibniz formula (2). Inserting (27) into the above equation
we obtain

Dβ
xu(x) =

i|β|+|α|+|γ|+1

(−1)|α|(2π)n

∑
γ≤α

cαγx
γ

∫
Rn

Dα−γ
k hβ(k) exp(ik · x) det(A)ŵη(|Ak̂|k)dk

=
i|β|+|α|+|γ|+1

(−1)|α|

∑
γ≤α

cαγx
γ

∫
Sn−1

det(A)fβα−γ(k̂)

|Ak̂|n−1−|α|+|γ|+|β|
Λ|α|+1−|β|−|γ|
η (

k̂ · x
|Ak̂|

)dµ(k̂), (43)

where

fβα−γ(k) := |k||α|+1−|β|−|γ|Dα−γ
k hβ(k) = fβα−γ(k̂).

If |β| = |α|+ 1, by Lemma 2 we obtain

Dβ
xu(x) = −det(A)

∫
−
Sn−1

fβα (k̂)

|Ak̂|n
dµ(k̂) ∀x ∈ Ω,

which completes the proof of (37).

By the above theorem we define a linear mapping T : Pq → Pq by

T(P∗) = ∇u
∣∣∣
x∈Ω

. (44)

As an example, below we explicitly calculate the linear mapping T defined by (44) for tensor C0

of the form:

m = n and (C0)piqj = µ1δijδpq + µ2δpjδiq + λδipδjq, (45)

where δij (i, j = 1, · · · , n) are the components of the identity matrix I. By (35), the constants µ1,
µ2, λ necessarily satisfy

µ1 ≥ µ2, µ1 + µ2 > 0 and λ > −µ1 + µ2

n
. (46)

The physical interpretations of the above tensor are versatile. For instance, (i) if µ1 = µ2 = µ > 0,
C0 can be recognized as an isotropic elasticity tensor, and (ii) if µ2 = λ = 0, C0 can be identified as
an isotropic permittivity/permeability tensor in electrostatics/magnetostatics. Direct calculations
show that D(k) defined by (39) is given by

D(k) = µ1|k|2I + (µ2 + λ)k⊗ k

and hence equation (40) can be rewritten as

û(k)⊗ (ik) = i|α|+2

[
1

µ1
P0k̂⊗ k̂− µ2 + λ

µ1(λ+ µ1 + µ2)
k̂⊗ k̂(k̂ ·P0k̂)

]
Dα

kŵ
′
η(k) ∀k ∈ Rn. (47)

Comparing the above equation with (34) for |β| = 2p, we conclude that

∇u =
1

µ1
P0∇∇ψ1 −

µ2 + λ

µ1(λ+ µ1 + µ2)
(∇∇∇∇ψ2)P0 ∀x ∈ Rn, (48)
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where ψp (p = 1, 2) are the solutions to (22). Inserting (33) or (34) into the above equation, we
immediately obtain the strain field explicitly. Moreover, by (48) we can write the strain field inside
Bn in the usual form as

∇u(x) = −Rα(x)P0 ∀x ∈ Ω, (49)

where

Rα(x) =
1

µ1
[Sα1 (x)− µ2 + λ

µ1(λ+ µ1 + µ2)
Sα2 (x)]. (50)

If |α| = 0, the tensors S0
1 and S0

2 are uniform on Ω and given by (S0
1)piqj = δpq(Q)ij ,

(Q)ij = det(A)

∫
−
Sn−1

k̂ik̂j

|Ak̂|n
dµ(k̂), (S0

2)piqj = det(A)

∫
−
Sn−1

k̂pk̂qk̂ik̂j

|Ak̂|n
dµ(k̂). (51)

If |α| = 1 and n ≥ 2, by (33) the tensors Sα1 and Sα2 are linear on Ω and given by

(Sα1 )piqj = det(A)δpq

∫
−
Sn−1

(x · k)Dα
k(k̂ik̂j) + xαk̂ik̂j

|Ak̂|n
dµ(k̂),

(Sα2 )piqj = det(A)

∫
−
Sn−1

(x · k)Dα
k(k̂pk̂qk̂ik̂j) + xαk̂pk̂qk̂ik̂j

|Ak̂|n
dµ(k̂). (52)

If |α| = 2 and n ≥ 3, by (34) the tensor Sα1 and Sα2 are quadratic on Ω and given by

(Sα1 )piqj = δpq

∫
−
Sn−1

det(A)

|Ak̂|n

[
[
1

2
(k̂ · x̂)2 − |Ak̂|2

2(n− 2)
]|k|2Dα

k(k̂ik̂j)

+
∑

|γ|=1,γ≤α

cαγx
γ(k · x)Dα−γ

k (k̂ik̂j) + xα(k̂ik̂j)

]
dµ(k̂), (53)

(Sα2 )piqj =

∫
−
Sn−1

det(A)

|Ak̂|n

[
[
1

2
(k̂ · x̂)2 − |Ak̂|2

2(n− 2)
]|k|2Dα

k(k̂pk̂qk̂ik̂j)

+
∑

|γ|=1,γ≤α

cαγx
γ(k · x)Dα−γ

k (k̂pk̂qk̂ik̂j) + xα(k̂pk̂qk̂ik̂j)

]
dµ(k̂).

4 Solutions to the inhomogeneous inclusion problem

We now consider an inhomogeneous problem for u : Rn → Rn,{
div
[
C(x)[∇u + F(x)]

]
= 0 on Rn,

|∇u| → 0 as |x| → ∞,
(54)

where

C(x) =

{
C0 if x ∈ Ω,

C1 if x ∈ Rn \ Ω,
(55)

and F ∈ Pq is referred to the far applied field and satisfies

div[C0F(x)] = 0 in Rn. (56)
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Let MC = C1 −C0 and assume MC is invertible. By (56), equation (54) can be rewritten as{
div
[
C0[∇u + F(x)] + MC[∇u + F(x)]χΩ

]
= 0 on Rn,

|∇u| → 0 as |x| → ∞.
(57)

Assume that Ω is an ellipsoid. Comparing the above equation with (36) and by (44) we see that if

MC[T(P∗) + F] = P∗, i.e., T(P∗) = MC−1[P∗ − MCF], (58)

then the solution to (36) (in the limit η → 0) is also the solution to (57). If the linear mapping
T− MC−1 : Pq → Pq is invertible, we can formally write the equivalent eigenstress as

P∗ = −(T− MC−1)−1MCF. (59)

Further, an important physical quantity, i.e., energy arising from the presence of the inhomogeneity,
is defined as

E(x0,θ) =

∫
Rn

{
[∇u + F(x)] ·C(x)[∇u + F(x)]− [∇u + F(x)] ·C0[∇u + F(x)]

}
dx

=

∫
Ω

{
[∇u + F(x)] · MC(x)[∇u + F(x)]

}
dx, (60)

where x0 denotes the position of the center of the ellipsoid Ω and θ describes the orientation of the
ellipsoid. Again we notice that the energy arising from the presence of the inhomogeneity can be
determined solely by the interior field inside the inclusion, and hence by the equivalent eigenstress
(59) for given applied nonuniform field F(x).

Explicitly finding the equivalent eigenstress for a given nonuniform applied field F is algebraical-
ly formidable if q > 0 and will be postponed to a future report. To present an example of how
the inhomogeneous problem (54) can be solved by the equivalent inclusion method, we solve the
problem “backward” in the sense that we specify the eigenstress P∗, and then by (58), find the
correct nonuniform applied field F(x).

For simplicity, assume that |α| = 1, n = 3 (three dimensions), and for some P0 ∈ R3×3,

P∗ = x1P
0.

Then by (52) we have (α = (1, 0, 0)),

(Sα1 )piqj = x1M
α
1 + x2M

α
2 + x3M

α
3 , Sα2 = x1N

α
1 + x2N

α
2 + x3N

α
3 ,

(Mα
1 )piqj = δpq[(Q)ij − 2(S0

2)11ij + 2(Q)11δ1iδ1j ],

(Mα
2 )piqj = δpq[−2(S0

2)12ij + (Q)22(δ1iδ2j + δ2iδ1j)],

(Mα
3 )piqj = δpq[−2(S0

2)13ij + (Q)33(δ1iδ3j + δ3iδ1j)], (61)

(Nα
1 )piqj = [(S0

2)piqj − 4(S0
3)11piqj + (S0

2)1iqjδ1p + (S0
2)1pijδ1q + (S0

2)1pqjδ1i + (S0
2)1pqiδ1j ],

(Nα
2 )piqj = [−4(S0

3)12piqj + (S0
2)2iqjδ1p + (S0

2)2pijδ1q + (S0
2)2pqjδ1i + (S0

2)2pqiδ1j ],

(Nα
3 )piqj = [−4(S0

3)13piqj + (S0
2)3iqjδ1p + (S0

2)3pijδ1q + (S0
2)3pqjδ1i + (S0

2)3pqiδ1j ],

where (Q)ij , (S
0
2)piqj are defined in (51), and

(S0
3)piqjkl = det(A)

∫
−
Sn−1

k̂pk̂qk̂ik̂j k̂kk̂l

|Ak̂|n
dµ(k̂).
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Therefore, by (44) and (49) we obtain

T(x1P
0) =

[ 1

µ1
(x1M

α
1 + x2M

α
2 + x3M

α
3 )− µ2 + λ

µ1(λ+ µ1 + µ2)
(x1N

α
1 + x2N

α
2 + x3N

α
3 )
]
P0.

Consequently, by (58) we have

F(x) =
[
x1MC

−1 − 1

µ1
(x1M

α
1 + x2M

α
2 + x3M

α
3 ) +

µ2 + λ

µ1(λ+ µ1 + µ2)
(x1N

α
1 + x2N

α
2 + x3N

α
3 )]P0.

Inserting the above equation into (60), we can compute the energy E , how it depends on x0, θ,
and the force and torque on the ellipsoid Ω upon differentiating E(x0,θ) against positions x0 and
angles θ.

Appendix: Evaluation of elliptic integrals

In the explicit solutions, the coefficients are given in terms of elliptic integrals of the form:

Iβ =

∫
−
Sn−1

det(A)k̂β

|Ak̂|n
dµ(k̂). (62)

For |α| = 0 and β = 2p, equation (31) can be rewritten as

Dβ
xψp(x) = −

∫
−
Sn−1

det(A)k̂β

|Ak̂|n
dµ(k̂) = −Iβ ∀x ∈ Ω. (63)

Further, assume A = diag[a1, a2, · · · , an] is diagonal, meaning that the principle axes of the ellipsoid
aligns with the coordinate frame. From the real space formulation, it is easy to check the following
properties of ψp:

ψp(−x1, · · · ) = ψp(x1, · · · ),

where x1 can be replaced by any other coordinates xi (i = 1, · · · , n). From (63) and the above
symmetry, we infer the following properties of the above elliptic integrals Iα.

(i) If |α| = 0, I0 = 1; if any entry in the multi-index α is odd, Iα = 0, and in particular, if |α| is
odd, Iα = 0.

(ii) If |α| is even ,
∑n

j=1 I
α+2ςj = Iα, where ςj is the multi-index with |ςj | = 1 and the only

nonzero occurs at the jth entry.

A simple Matlab program for computing the integral (62) is available at the author’s homepage
http://math.rutgers.edu/~ll502/EllipticIntegrals/.
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