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Abstract

We present a new method of deriving microstructure-dependent bounds on the effective proper-
ties of general heterogeneous media. The microstructure is specified by the average Eshelby tensors.
In the small contrast limit, we introduce and calculate the expansion coefficient tensors. We then
show that the effective tensor satisfies a differential inequality with the initial condition given by
the expansion coefficient tensors in the small contrast limit. Using the comparison theorem we
obtain rigorous bounds on the effective tensors of multiphase composites. These new bounds, tak-
ing into account of the average Eshelby tensors for homogeneous problems, are much tighter than
the microstructure-independent Hashin-Shtrikman bounds. Also, these bounds are applicable to
non-well-ordered composites and multifunctional composites. We anticipate that this new approach
will be useful for the modeling and optimal design of multiphase multifunctional composites.

1 Introduction

In the theories of composite materials, fracture mechanics, dislocations and solid phase transfor-
mations, two problems appear often: the first is to evaluate the elastic energy arising from the
presence of inhomogeneities for a given microstructure; the second is to find the microstructure of
the inhomogeneities minimizing the energy under some constraint, e.g., a fixed volume fraction.
The solution to the first problem is generally straightforward, at least numerically; the practical
difficulty arises from the multiple scales of inhomogeneities and/or the singularities of the fields
associated with singular geometries or high-contrast of material properties. The second problem is
much more difficult and usually attacked by the indirect method of first deriving microstructure-
independent bounds on the energy, and then constructing a microstructure to attain the bounds.

The importance of the above problems cannot be overstated, as evident in the two most cited
papers in the area of solid mechanics, which are Eshelby (1957 [16]) and Mori-Tananka (1973 [34]).
The closed-form solutions due to Eshelby for ellipsoidal inclusions have played a central role in the
development of many, if not all, models about heterogeneous media. Reasons for the ubiquitous
use of the Eshelby’s solutions include that (i) Ellipsoids have the right geometrical complexity.
They are simple and the geometric parameters can be easily measured and determined by volume,
orientation, and aspect ratios. (ii) Important singular geometries such as cracks and fibers can be
regarded as the limits of ellipsoids. (iii) Eshelby’s solutions are closed-form. Physically important
quantities such as energy, strain and stress fields in the inclusion are explicitly given, and predictions

1



based on the Eshelby’s solutions can usually be obtained by simply solving algebraic equations,
which can then be compared with the experiments.

In his celebrated paper of 1957, Eshelby initially solved the homogeneous problem with a uniform
eigenstrain on a subdomain called inclusion. In applying his solutions for homogeneous media to
inhomogeneous problems where material properties on the inclusion are different from the matrix,
he observed a remarkable property of ellipsoids: the induced strain is uniform on the ellipsoidal
inclusion. By this, now called the Eshelby uniformity property, and some simple algebraic argument,
Eshelby (1957) showed that his solutions for a homogeneous inclusion are also solutions for an
inhomogeneous inclusion, provided that the eigenstrain is chosen appropriately — This is the so-
called equivalent inclusion method [36, 37]. However, two or more ellipsoids together do not enjoy
the Eshelby uniformity property, and the equivalent inclusion method cannot be used to solve
the inhomogeneous problem when interactions between inhomogeneities are important, e.g., two
cracks near to each other and composites with a non-dilute volume fraction of inhomogeneities. To
overcome the limitation of the analysis based on the Eshelby’s solutions, a prevailing approximation
scheme, referred to as the Mori-Tanaka theory [34], is often employed. In this approach, the
“concentration tensors” [48] that maps the average perturbed strain (stress) in the matrix phase to
the average perturbed strain (stress) in the inclusion phase, though unknown for inhomogeneous
media with a nontrivial volume fraction, are nevertheless replaced by the inhomogeneous media in
the dilute limit where the Eshelby’s single inclusion model is applicable [6]. Therefore, the final
problem in this approach amounts to evaluating the average Eshelby tensors on the inclusions in
the dilute limit, which are further approximated by solving the homogeneous inclusion problem. In
addition, Weng (1990 [49]) showed that the predictions based on the Mori-Tanaka method always
lie in the rigorous Hashin-Shtrikman-Walpole bounds and hence placed the method on a firm
theoretical ground. Advantages of this approach lie in the closed-form predictions of the effective
tensors of the media and can be conveniently compared with experiments.

Like any closed-form effective medium theories [16, 34, 7, 39], the constitutive models based
on analytically solvable microstructures are inherently approximate since the microstructures of
real-world composites can never be exactly the microstructures assumed in the models and are
often too complicated to be described in precise geometric terms. A different but related approach
to the effective properties of multiphase composites, particularly advocated by Hashin, is to derive
rigorous and microstructure-independent bounds on the effective properties of composites. Hashin
(1970 [22]) has argued that, since closed-form predictions of the energy or the effective properties of
composites are inherently nonrigorous, rigorous microstructure-independent bounds shall be used
whenever they are available. This philosophy has motivated many authors to derive rigorous bounds
and construct optimal microstructures for two-phase and multiphase composites in various physical
settings including elasticity [43, 5], conductivity [10, 18, 1, 11], cross-property [12, 19, 46, 13]
among others [31]. The methods of deriving bounds include the classic the Hashin-Shtrikman
method [23, 24, 32, 2] and the compensated compactness or translation method [44, 28, 38, 31].
The optimal microstructures include the Hashin’s construction of coated spheres [21], Milton’s
construction of coated ellipsoids [30], multi-rank laminates [29], the Vigdergauz microstructures
[47, 20] and recently found periodic E-inclusions [27, 26]. The advantage of this approach obviously
lies in its rigor and generality. The disadvantage, as Berryman (1980 [7]) has pointed out, is that
microstructure-independent bounds completely ignore our knowledge on the microstructure even
if it is available from experimental observations. Also, the bounds are often far apart in cases of
most interest. For applications and comparisons with experiments, it is certainly more desirable to
have closed-form predictions. Another technical issue associated with this approach is the assumed
“well-ordered” condition, i.e., the difference of the two tensors describing the material properties
are either positive semi-definite or negative semi-definite. Neither the method based on the Hashin-

2



Shtrikman variational principle and nor the translation method yields optimal bounds for generic
non-well-ordered cases.

Following the above influential works, particularly, Eshelby (1957, 1961), Hashin & Shtrikman
(1962a, 1962b, 1963), Walpole (1966), Mori & Tanaka (1973), Bevinite (1987), Weng (1990), Milton
(2002) and references therein, we may raise the following questions: (i) To what extent, the formulas
predicted by the Mori-Tanaka theory are accurate enough for practical applications? (ii) Can we
find some rigorous bounds while taking into account the observed microstructure through, e.g., the
average Eshelby tensors for the homogeneous problem? (iii) What are the attaining microstructures
for these bounds? and (iv) What are the optimal bounds for non-well-ordered cases?

In an attempt to answer the above the questions, we propose a new approach to deriving bound-
s for multiphase composites. We remark that the method is general and can be used to address
physical problems including elasticity, conductivity, cross-property among others, though the mo-
tivation of this work originates from problems in elasticity and terminologies such as stress, strain,
and stiffness and compliance tensors are employed for the purpose of bookkeeping. The obtained
bounds, on one hand, are microstructure-dependent and expressed in parameters including the av-
erage Eshelby tensors, and on the other hand, can recover the classic microstructure-independent
Hashin-Shtrikman bounds upon solving an algebraic maximization problem over the possible aver-
age Eshelby tensors. Also, the bounds do not require well-ordered conditions and apply to general
anisotropic materials.

Heuristically, the idea is as follows. Let L(x, t) be the media interpolating a homogeneous
comparison medium Lc and the inhomogeneous medium L∗(x) as the parameter t varies between
zero and one, and Le(t) be the associated effective stiffness tensor. Differentiating Le(t) with respect
to t, we may establish an identity

d

dt
Le = F (Le, t), (1.1)

where F is some function. We recognize the above equation describes a flow in the symmetric tensor
space Lsym := {L : Rm×n → Rm×n is symmetric}. In general, the function F (Le, t) is unknown and
depends on the microstructure, but a bound on F (Le, t), e.g., F (Le, t) ≤ F0(Le, t), can be found
by using quasiconvex functions and solving algebraic minimization problems. From this bound, we
have

d

dt
Le ≤ F0(Le, t). (1.2)

Further, we solve explicitly the ordinary differential system

d

dt
Le0 = F0(Le0, t). (1.3)

Then an application of the comparison theorem to (1.2)-(1.3) yields bounds on Le(t) in terms
of Le0(t) and the initial conditions at t → 0. The initial conditions at t → 0 are provided by
perturbation calculations and in particular, related with the average Eshelby tensors. Similar
argument can be applied to the effective compliant tensor Me(t) yielding the “dual” bounds.

We remark that the use of differential schemes in the modeling of composite materials has been
an area of significant activity. With respect to volume fraction, the differential scheme has been
used by Bruggerman (1935) and Norris (1985) and proven to be realizable by Milton (1985). Norris
et al. (1985) also applies this scheme to suspensions of inclusions of a wide variety of shapes which
have been proved to be realizable by Avellaneda (1987). Lipton (1993) develops optimal inequalities
for polarization and Eshelby tensors to obtain useful differential inequalities. Compared to these
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works, the present work consider differential scheme with respect to “contrast” instead of volume
fraction and the microstructure is characterized by the average Eshelby tensor instead of the actual
geometries of inhomogeneities.

The paper is organized as follows. In § 2 by Fourier analysis we present general formulas
for computing lower bounds of the energy of gradient fields G and divergence-free fields P in a
homogeneous comparison medium. These lower bounds are useful for deriving the inequality (1.2).
In § 3-4 we derive the bounds on the effective tensors and the attainment conditions for these
bounds. In § 5 we compute the average Eshelby tensors and relate them with the expansion
coefficient tensors. We summarize and present an outlook of possible applications in § 6.

Notation. We consider (N + 1)-phase composites in n-dimensional space. Without loss of
generality assume that the composite is periodic with an open bounded unit cell Y of volume
one, e.g., (0, 1)n . In other words, the unit cell Y is a representive volume element (RVE) of the
composite. Denote by θα ∈ (0, 1) the volume fraction of phase-α.

We will consider generic fields that take values from Rm×n, where m is a positive integer. For
brevity denote Rm×n by U; the inner product of F1,F2 ∈ U, is defined as F1 ·F2 = Tr(FT

1 F2). Let
L be the tensor space of all linear mappings L : U → U, and Lsym be the subspace of symmetric
tensors satisfying F1 · LF2 = F2 · LF1 for all F1,F2 ∈ U. In index form the operation of a tensor
L ∈ L on a matrix F ∈ U can be represented as

(LF)pi = (L)piqj(F)qj ,

where p, q = 1, · · · ,m; i, j = 1, · · · , n, and repeated indices imply summation. For two tensors
L1,L2, by L1 > (≥)L2 we mean L1−L2 is positive definite (positive semi-definite). The meanings

of L1 < (≤)L2 are likewise. Denote by L+
sym = {L ∈ Lsym : L > 0}, L+

sym = {L ∈ Lsym : L ≥ 0},
and L+

ellip = {L ∈ Lsym : (a ⊗ b) · L(a ⊗ b) > c|a|2|b|2 for some c > 0 ∀a ∈ Rm,b ∈ Rn} be the

subset of strictly elliptic tensors. Note that L+
sym ⊂ L+

ellip and the inclusion is strict if m,n > 1.

Further, we denote by L2(Y ;U) the space of all square integrable functions φ : Y → U. For
any φ ∈ L2(Y ;U), by Fourier transformation we have

φ(x) = φ̂0 +
∑
k∈K

φ̂k exp(ik · x), φ̂k =

∫
−
Y
φ(x) exp(−ik · x). (1.4)

Here and subsequently, L is the Bravais lattice associated with the unit cell Y , K is the reciprocal
lattice with the point zero removed, and

∫
−V denotes the average value of the integrand over the

domain V . Let

g(x) =
∑
k∈K

ĝk exp(ik · x), ĝk = (φ̂kk̂)⊗ k̂,

σ(x) =
∑
k∈K

σ̂k exp(ik · x), σ̂k = φ̂k − (φ̂kk̂)⊗ k̂, (1.5)

where k̂ = k/|k|. The symbol g stands for “gradient”; σ is the usual notation for stress which is
divergence free (in equilibrium and no body force). We therefore obtain the following orthogonal
decomposition:

φ = φ̂0 + g + σ,∫
−
Y

g · σ =

∫
−
Y

g · φ̂0 =

∫
−
Y
σ · φ̂0 = 0. (1.6)
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We remark that the above decomposition is unique and we denote by G and P the collection of all
such g and σ. In real space, these function spaces are identified as:

G = {g ∈ L2(Y ;U) : g = ∇u, u =
∑
k∈K

ûk exp(ik · x) for some ûk ∈ C m},

P = {σ ∈ L2(Y ;U) : divσ = 0, σ =
∑
k∈K

σ̂k exp(ik · x) for some σ̂k ∈ C m×n},

where the pth row vector of ∇u is the gradient of the pth component of u and the “div” operates
on the row vectors. In the case m = n, a subspace of G is obtained by taking the second gradient
of the scalar functions in

W = {ξ : ∇∇ξ ∈ G, ξ =
∑
k∈K

ξ̂k exp(ik · x) for some ξ̂k ∈ C }.

2 Quasiconvexity inequalities

In the two classic methods of deriving energy bounds for inhomogeneous media, i.e., the Hashin-
Shtrikman’s method and the compensated compactness or translation method, it is necessary to
have a priori estimates on energy of the field in a homogeneous comparison medium. In the Hashin-
Shtrikman’s approach and in terms of homogeneous Eshelby inclusion problems, this is hidden in the
Bitter-Crum theorem which states that the strain energy associated with an dilatational eigenstress
in an isotropic medium depends only on the volume (fraction) of the inclusions. In the compensated
compactness or translation method, we directly use the inequality∫

−
Y
W (g) ≥W (0) ∀g ∈ G, (2.1)

where the usual choice of the function W : U → R is the determinant or some linear combination
of subdeterminants (Ericksen 1962 [15]). In a more general setting, equalities or inequalities of the
above type arise from the quasiconvexity of the function W (Morrey, 1952; Ball, 1977). We remark
that quasiconvex functions, though originally defined for gradient fields, can be similarly defined
for fields with other differential constraints, e.g., divergence-free fields in P (Tartar, 1985).

For energy bounds on linear inhomogeneous media, quadratic quasiconvex functions are particu-
larly useful. The following lemma gives explicit formulas to calculate general quadratic quasiconvex
functions with respect to gradient fields in G and divergence-free fields in P.

Lemma 1 Let L ∈ L+
ellip be a strictly elliptic tensor, E ∈ U be a nonzero matrix, k̂ ∈ Rn be unit

vectors, N be the inverse of the matrix (L)piqj(k̂)i(k̂)j, and ω = (LE)k̂ ∈ Rm. (Note that the

matrix N and the vector ω depend on the unit vector k̂.) Denote by

ρg(L,E) = min
|k̂|=1

1

k̂ ·ETNEk̂
, (2.2)

ρσ(L,E) = min
|k̂|=1

1

[E− (Nω)⊗ k̂] · L[E− (Nω)⊗ k̂]
, (2.3)

Sg(L,E) =
{
ck̂ : c ∈ R,

1

k̂ ·ETNEk̂
= ρg(L,E)

}
, (2.4)
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and

Sσ(L,E) =
{
ck̂ : c ∈ R,

1

[E− (Nω)⊗ k̂] · L[E− (Nω)⊗ k̂]
= ρσ(L,E)

}
. (2.5)

(i) For any g ∈ G, ∫
−
Y

g · Lg ≥ ρg(L,E)

∫
−
Y
|g ·E|2, (2.6)

where equality holds if and only if for some ck ∈ C ,

g(x) =
∑

k∈K∩Sg(L,E)

ûk ⊗ k̂ exp(ik · x), ûk = ckNEk̂. (2.7)

(ii) For any σ ∈ P, ∫
−
Y
σ · L−1σ ≥ ρσ(L,E)

∫
−
Y
|σ ·E|2, (2.8)

where equality holds if and only if for some ck ∈ C ,

σ(x) =
∑

k∈K∩Sσ(L,E)

σ̂k exp(ik · x), σ̂k = ck[LE− L(Nω)⊗ k̂]. (2.9)

Proof: From (1.5), for any g ∈ G the Fourier coefficients ĝ(k) satisfy that for some ûk ∈ C m,

ĝ(k) = ûk ⊗ k̂. (2.10)

From the Parseval’s theorem (Rudin 1987), we have∫
−
Y

g · Lg =
∑
k∈K

(û∗k ⊗ k̂) · L(ûk ⊗ k̂), (2.11)

and ∫
−
Y
|g ·E|2 =

∑
k∈K
|uk ·Ek̂|2. (2.12)

Consider the algebraic minimization problem

mg(k̂) := min{(a∗ ⊗ k̂) · L(a⊗ k̂) : a ·Ek̂ = λ, a ∈ C m}.

By the method of Lagrangian multiplier, we find the minimum is given by

mg(k̂) =
|λ|2

k̂ ·ETNEk̂
, (2.13)

and the minimum is attained if and only if for some c ∈ C ,

a = cNEk̂. (2.14)

Further, from (2.2) and (2.13) we see that

(a∗ ⊗ k̂) · L(a⊗ k̂) ≥ ρg(L,E)|a ·Ek̂|2 ∀ |k̂| = 1 & a ∈ C m. (2.15)
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Additionally, by (2.4) and (2.14) equality holds for (2.15) if and only if for some c ∈ C ,

a = cNEk̂ and k̂ ∈ Sg(L,E).

Therefore, by (2.11), (2.12) and (2.15) we have∫
−
Y

g · Lg =
∑
k∈K

(û∗k ⊗ k̂) · L(ûk ⊗ k̂) ≥ ρg(L,E)
∑
k∈K
|ûk ·Ek̂|2 = ρg(L,E)

∫
−
Y
|g ·E|2,

which completes the proof of (2.6) and the attainment condition (2.7). Below we show part (ii) of
the lemma.

From (1.5), for any σ ∈ P the Fourier coefficients σ̂(k) satisfy that

σ̂(k)k̂ = 0 ∀k ∈ K. (2.16)

By the Parseval’s theorem we obtain∫
−
Y
σ · L−1σ =

∑
k∈K

σ̂∗k · L−1σ̂k, (2.17)

and ∫
−
Y
|σ ·E|2 =

∑
k∈K
|σ̂k ·E|2. (2.18)

Consider the algebraic minimization problem

mσ(k̂) := min{π∗ · L−1π : π ∈ C m×n, πk̂ = 0, π ·E = λ′}.

By the method of Lagrangian multiplier, we find that a minimizer π to the above problem neces-
sarily satisfies that for some c0 ∈ C and d ∈ C m,

π = c0LE + L(d⊗ k̂).

From the constraints πk̂ = 0 and π ·E = λ′, we find that d = −c0Nω (recall that ω = (LE)k̂),

c0 =
λ′

E · LE− ω ·Nω
=

λ′

[E− (Nω)⊗ k̂] · L[E− (Nω)⊗ k̂]
. (2.19)

Thus, the minimum is given by

mσ(k̂) =
|λ′|2

[E− (Nω)⊗ k̂] · L[E− (Nω)⊗ k̂]
, (2.20)

and the minimum is attained if and only if for some c ∈ C ,

π = c[LE− L(Nω)⊗ k̂]. (2.21)

Further, from (2.3) and (2.20) we see that

π∗ · L−1π ≥ ρg(L,E)|π ·E|2 ∀π ∈ U. (2.22)

Additionally, by (2.5) and (2.21) equality holds for (2.22) if and only if for some c ∈ C ,

π = c[LE− L(Nω)⊗ k̂] and k̂ ∈ Sσ(L,E).

Therefore, by (2.17), (2.18) and (2.22) we have∫
−
Y
σ · L−1σ =

∑
k∈K

σ∗
k̂
· L−1σk̂ ≥ ρσ(L,E)

∑
k∈K
|σ̂k ·E|2 = ρσ(L,E)

∫
−
Y
|σ ·E|2,

which completes the proof of (2.8) and the attainment condition (2.9).

7



3 Bounds on the effective stiffness tensors

3.1 Series expansions of the gradient fields and effective stiffness tensors

We first calculate the series expansions of the gradient fields and effective stiffness tensors by
assuming the contrast of the composite is small. To some extent the calculation is classic, see e.g.
Milton (2002, Chapter 14) and references therein. Our calculation extracts higher-order terms that
explicitly depend on the average Eshelby tensor.

The inhomogeneous medium considered in this paper is specified by

L∗(x) = Lα ∈ L+
ellip if x ∈ Ωα, α = 0, · · · , N. (3.1)

The periodic inhomogeneous Eshelby inclusion problem for a given applied average strain F ∈ U is
to find g∗ ∈ G such that

L∗(x)(g∗ + F) ∈ P⊕ U. (3.2)

For many important applications, we need to calculate the energy

E∗(F) =

∫
−
Y

[(g∗ + F) · L∗(x)(g∗ + F)], (3.3)

find how it depends on the microstructure and determine the optimal microstructure. Explicit
closed-form solutions to the above problem are rare; we turn to the indirect method of first esti-
mating the bounds on the energy and then constructing microstructures to attain these bounds.
To this end, we propose a new method based on differential inequalities and comparison theorems
for ordinary differential systems.

As in the method of Hashin-Shtrikman we first choose a homogeneous “comparison” medium
Lc ∈ L+

ellip. Let

L(x, t) = Lc + t(L∗(x)− Lc) ∈ L+
ellip ∀ t ∈ [0, 1] (3.4)

interpolates between the homogeneous medium Lc and the heterogeneous medium L∗(x) as t varies
in [0, 1]. For an average applied strain F ∈ U, we consider the minimization problem:

E(F, t) = min
g∈G

∫
−
Y

(g + F) · L(x, t)(g + F). (3.5)

The associated Euler-Lagrangian equation is to find gt ∈ G such that

L(x, t)(gt + F) ∈ P⊕ U. (3.6)

From equation (3.5), we verify that E(F, t) is a quadratic function of F, implying that there exists
a symmetric tensor Le(t) ∈ L+

ellip such that

E(F, t) = F · Le(t)F ∀F ∈ U. (3.7)

We remark that the tensor Le(t) is precisely the effective tensor of the composite L(x, t).
Clearly, if t = 0, the medium is homogeneous, a solution to (3.6) is trivially given by gt

∣∣
t=0

= 0
and E(F, 0) = F · LcF. Assume a small perturbation, i.e., 0 < |t| << 1. It can be shown that the
solutions to (3.6) can be written as

gt = tg1 + t2g2 + t3g3 + · · · , (3.8)
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where gi ∈ G (i = 1, 2, · · · ). Inserting the above expression into (3.6) and arranging terms according
to the order of t, we rewrite (3.6) as

(Lc + t(L∗(x)− Lc))(F + tg1 + t2g2 + t3g3 + · · · ) ∈ P⊕ U, (3.9)

and find that gi ∈ G necessarily satisfies{
Lcg1 + (L∗(x)− Lc)F ∈ P⊕ U if i = 1,

Lcgi + (L∗(x)− Lc)gi−1 ∈ P⊕ U if i > 1.
(3.10)

In particular, we notice that (3.10)1 is equivalent to

Lcg1 + (L∗(x)− Lc)F = Lcg1 +
N∑
α=0

MLαFχα ∈ P⊕ U, (3.11)

where χα, equal to one on Ωα and zero otherwise, is the characteristic function of domain Ωα, and

MLα = Lα − Lc α = 0, · · · , N. (3.12)

As one will see below, the above problem is exactly the homogeneous Eshelby inclusion problem (5.2)
with eigenstress Pα = MLαF on the inclusion Ωα. By (3.7) and (3.8) we expand Le(t) as a power
series of t:

Le(t) =
∞∑
i=0

tiΓi = Γ0 + tΓ1 + t2Γ2 + t3Γ3 + · · · . (3.13)

To find the expansion coefficient tensors Γi, we differentiate (3.5) with respect to F and, by (3.7),
(3.9) and (3.13), obtain

2
∞∑
i=0

tiΓiF = 2LcF + 2t

[∫
−
Y

L∗(x)− Lc

]
F + 2t

∫
−
Y

(L∗(x)− Lc)gt.

From the above equation, we immediately find that

Γ0 = Lc, Γ1 = −Lc +

∫
−
Y

L∗(x), (3.14)

and

Γi+1F =

∫
−
Y

(L∗(x)− Lc)gi =

∫
−
Y

L∗(x)gi if i = 1, 2, · · · . (3.15)

Therefore,

(Le(t)− Lc − tΓ1 − t2Γ2)F =
∞∑
i=3

tiΓiF = t

∫
−
Y

(L∗(x)− Lc)(gt − tg1). (3.16)

Further, by (3.15), (3.10)1 and (1.6) we have

F · Γ2F = F ·
∫
−
Y

(L∗(x)− Lc)g1 = −
∫
−
Y

g1 · Lcg1. (3.17)
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Similarly, by (3.15), (3.10) and (1.6) we have

F · Γ3F =

∫
−
Y

F · (L∗(x)− Lc)g2 =

∫
−
Y

g2 · (L∗(x)− Lc)F

= −
∫
−
Y

g2 · Lcg1 = −
∫
−
Y

g1 · Lcg2 =

∫
−
Y

g1 · (L∗(x)− Lc)g1, (3.18)

The above equation indicates that the coefficient tensor Γ3 is completely determined by solving
(3.10)1 for g1. In general, we have the following theorem.

Theorem 2 For any integer i ≥ 1, let Γi be the expansion coefficient tensors satisfying (3.13) and
gi ∈ G satisfy (3.10). Then ∫

−
Y

gi · Lcgj = −F · Γi+jF,∫
−
Y

gi · (L∗(x)− Lc)gj = F · Γi+j+1F,

(3.19)

We note that the above theorem implies that

F · Γ2iF = −
∫
−
Y

gi · Lcgi,

F · Γ2i+1F =

∫
−
Y

gi · (L∗(x)− Lc)gi.

(3.20)

In other words, to determine the coefficient tensors Γ0, · · · ,Γ2i+1, it is sufficient to solve (3.10) for
g1, · · · ,gi. This is quite useful for numerical calculations of higher order terms in the expansion
(3.13) and appears to be unnoticed before.

Proof: By repeatedly using the argument in (3.18), for i, j ≥ 1 we have∫
−
Y

gi · Lcgj = −
∫
−
Y

gj · (L∗(x)− Lc)gi−1 =

∫
−
Y

gi−1 · Lcgj+1

= · · · =
∫
−
Y

g1 · Lcgj+i−1 = −F ·
∫
−(L∗(x)− Lc)gj+i−1

= −F · Γi+jF.

The other equation in (3.19) follows similarly.

We remark that the expansions (3.8) and (3.13) can be rigorously justified. In fact, the effective
tensor Le(t) is analytic on any open interval such that L(x, t) ∈ L+

ellip for any x ∈ Y . Further,
the tensors Γ2 (resp. Γ3) may also be called (resp. higher-order) polarization tensors. This
terminology originates from the works of Pólya-Szegö (1951 [41]). In particular, Γ2, upon a linear
transformation and in various physical settings, can be identified as the demagnetization tensors in
magnetics (Brown 1962 [8]), the (average) Eshelby tensors (Eshelby 1957 [16]) in linear elasticity,
and the geometric parameter tensors in Firoozye and Kohn (1994) [17].
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3.2 A differential identity

From (3.5) and (3.7), direct calculations reveal that

d

dt
E(F, t) = F · dL

e(t)

dt
F =

∫
−
Y

{
(gt + F) · (L∗(x)− Lc)(gt + F)

}
+2

∫
−
Y

dgt
dt
· [L(x, t)(gt + F)]. (3.21)

Clearly, dgt/dt ∈ G since gt ∈ G for all t ∈ (0, 1). Therefore, the last term on the right hand side
of (3.21) vanishes by (3.6) and (1.6). By (3.4), (3.5) and (3.7), we rewrite the right hand side of
the above equation as∫

−
Y

{1

t
(gt + F) · L(x, t)(gt + F)− 1

t
(gt + F) · Lc(gt + F)

}
=

1

t

[
−
∫
−
Y

gt · Lcgt + F · (Le(t)− Lc)F

]
.

(3.22)

Thus, by (3.7), (3.21) and (3.22) we have that for any t ∈ (0, 1),

tF · dL
e(t)

dt
F = −

∫
−
Y

gt · Lcgt + F · (Le(t)− Lc)F. (3.23)

Let

X(t) = Le(t)− Γ0 − tΓ1 − t2Γ2. (3.24)

Then ∫
−
Y

gt · Lcgt =

∫
−
Y

(gt − tg1 + tg1) · Lc(gt − tg1 + tg1)

=

∫
−
Y

[t2g1 · Lcg1 + 2tg1 · Lc(gt − tg1) + (gt − tg1) · Lc(gt − tg1)] (3.25)

= −t2F · Γ2F− 2F ·X(t)F +

∫
−
Y

(gt − tg1) · Lc(gt − tg1),

where for the last equality we have used (3.17) and, by (1.6), (3.11) and (3.16), the identity∫
−
Y

g1 · Lc(gt − tg1) = −F ·
∫
−
Y

(L∗(x)− Lc)(gt − tg1) = −1

t
F ·X(t)F.

By (3.25) we can rewrite (3.23) as

tF · dL
e(t)

dt
F = −

∫
−
Y

(gt − tg1) · Lc(gt − tg1) + F · (t2Γ2 + 2X(t) + Le(t)− Lc)F.

Inserting dLe(t)
dt = dX(t)

dt + Γ1 + 2tΓ2 into the above equation, we obtain

F · [tdX(t)

dt
− 3X(t)]F = −

∫
−
Y

(gt − tg1) · Lc(gt − tg1) ∀ t ∈ (0, 1). (3.26)

The above differential identity has profound implication in the behavior of the flow t 7→ Le(t), as
will be shown shortly.
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3.3 Proof of the upper bound

Below we find a lower bound for the integral
∫
−Y (gt − tg1) · Lc(gt − tg1) which is the negative of

the right hand side of (3.26). By Lemma 1, (2.6), we have that for any nonzero E ∈ U,∫
−
Y

(gt − tg1) · Lc(gt − tg1) ≥ ρg(Lc,E)

∫
−
Y
|E · (gt − tg1)|2. (3.27)

Subsequently, we write ρg(Lc,E) briefly as ρg when there is no danger of confusion. By the Jensen’s
inequality we bound the right hand side of (3.27) from below as∫

−
Y
|E · (gt − tg1)|2 ≥

N∑
α=0

θα

[∫
−

Ωα

E · (gt − tg1)
]2

=
N∑
α=0

θα|E · Fα|2. (3.28)

where

Fα =

∫
−

Ωα

(gt − tg1) (α = 0, · · · , N). (3.29)

Since
∫
−Y (gt − tg1) = 0, by (3.29) and (3.16) we have

N∑
α=0

θαFα = 0,
N∑
α=0

θαLαFα =
1

t
X(t)F. (3.30)

Therefore, the right hand side of (3.28) is bounded from below by

min
{ N∑
α=0

θα|E · Fα|2 : Fα (α = 0, · · · , N) satisfy (3.30)
}

=: Q(
1

t
X(t)F). (3.31)

It is straightforward to verify that the above minimum Q(1
tX(t)F) is nonnegative and depends on

its argument quadratically. 1 Therefore, we can identify a positive semi-definite tensor C : U→ U,
independent of t, such that

Q(
1

t
X(t)F) =

1

t2
F ·X(t)CX(t)F. (3.32)

In summary, by (3.27), (3.28), (3.31) and (3.32) we conclude that∫
−
Y

(gt − tg1) · Lc(gt − tg1) ≥ ρg
t2

F ·X(t)CX(t)F. (3.33)

By (3.33) and (3.26) we arrive at

t
dX(t)

dt
− 3X(t) +

ρg
t2

X(t)CX(t) ≤ 0 ∀ t ∈ (0, 1). (3.34)

1The minimization problem (3.31) can be rewritten as a standard quadratic programming problem: min{x ·Ax :
Bx = c}, where the components of the p × 1 vector x are those of the matrix Fα, the components of the q × 1
vector c are either zero or the components of X(t)F/t, and the p× p matrix A and q × p matrix B, independent of
t, are such that x ·Ax is equal to

∑N
α=0

1
|Ωα| |E · Fα|

2 and Bx = c is equivalent to the constraints in (3.30). By the
method of Lagrangian multiplier, we formally find the minimum of this quadratic programming problem is given by
c · (BA−1BT )−1c, which is a quadratic function of c and hence a quadratic function of X(t)F/t.
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Let X(t) = X̃(t)t3. Then equation (3.34) implies that{
dX̃(t)
dt + ρgX̃(t)CX̃(t) ≤ 0 ∀ t ∈ (0, 1),

X̃(t) = Γ3 if t = 0.
(3.35)

Assume that the tensor

X̃0(t) =
(
Γ−1

3 + tρgC
)−1

= Γ3

(
II + tρgCΓ3

)−1
(3.36)

is non-singular for t ∈ [0, 1]. Then direct calculations reveal that X̃0(t) satisfies that{
dX̃0(t)
dt + ρgX̃0(t)CX̃0(t) = 0 if t ∈ (0, 1),

X̃0(t) = Γ3 if t = 0.
(3.37)

Setting X̃1(t) = X̃0(t)− X̃(t), by (3.35) and (3.37) we obtain{
dX̃1(t)
dt + X̃1(t)B + BT X̃1(t) + ρgX̃1(t)CX̃1(t) =: Z(t) ≥ 0 if t ∈ (0, 1),

X̃1(t) = 0 if t = 0.
(3.38)

where B = ρgCX̃(t). We recognize that the above equations are Riccati differential equations, see
Reid (1972) [42]. An application of the comparison theorem [42, 14] will yield restrictions on the
trajectories of t 7→ X1(t) and hence t 7→ Le(t) which can be interpreted as cross-property relations.
In particular, if the behavior of Le(t) is known as t→ 0, then the restrictions imply bounds on the
final values of Le(1), i.e., the interested effective tensor Le∗.

For the reader’s convenience, we outline below the argument of the comparison theorem. The
Riccati differential equations (3.38)1 are closely related with the linear differential system for U ,V :
[0, 1]→ L, {

−V ′(t) + Z(t)U(t)−BT (t)V(t) = 0,

U ′(t)−B(t)U(t)− ρgCV(t) = 0.
(3.39)

Let 0 ≤ t1 < t2 ≤ 1, and denote by Ut1 ,Vt1 : [t1, t2] → L the solutions to (3.39) with initial
conditions

U(t1) = II, V(t1) = X̃1(t1). (3.40)

Further, for any given nonzero F ∈ U we denote by

U(t) = Ut1(t)F, V(t) = Vt1(t)F.

It is clear from (3.39)-(3.40) that U,V : [t1, t2]→ U satisfy that

X̃1(t1)U(t1)−V(t1) = X̃1(t1)F− X̃1(t1)F = 0, (3.41)

and that {
−V′(t) + Z(t)U(t)−BTV(t) = 0,

U′(t)−BU(t)− ρgCV(t) = 0.
(3.42)
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From the above equation it is easy to check that

d

dt
[U(t) ·V(t)] = ρgV(t) ·CV(t) + U(t) · Z(t)U(t). (3.43)

Let

J = U(t1) · X̃1(t1)U(t1) +

∫ t2

t1

{
ρgV(t) ·CV(t) + U(t) · Z(t)U(t)

}
dt. (3.44)

By (3.43) and (3.41) we have

J = U(t1) · [X̃1(t1)U(t1)−V(t1)] + U(t2) ·V(t2) = U(t2) ·V(t2). (3.45)

If X̃1(t1) > 0, equation (3.44) implies J > 0 for any nonzero F ∈ U and hence, by (3.45), Ut1(t)
and Vt1(t) are nonsingular for any t ∈ [t1, t2]. Consequently, Vt1(t)U−1

t1
(t) is well-defined and we

can easily verify that it satisfies (3.38). By the uniqueness of the solution to (3.38) with initial
conditions at t = t1, we conclude that

X̃1(t) = Vt1(t)U−1
t1

(t) ∈ L+
sym ∀ t ∈ [t1, t2].

Further, if we have merely X̃1(t1) ≥ 0, for ε > 0 let X̃1ε = X̃1(t1) + εII and denote by X̃ε
1(t) the

solution to (3.38)1 satisfying X̃ε
1(t1) = X̃1ε. By the result just established the solution X̃ε

1(t) exists
on [t1, t2] and X̃ε

1(t) > 0 on [t1, t2]. Further, Theorem 4.1 of [42] implies that X̃ε
1(t) → X̃1(t) as

ε→ 0, and henceforth X̃1(t) ≥ 0 on [t1, t2]. In conclusion, by (3.38)2 we have

X̃1(t) ≥ 0 ∀ t ∈ [0, 1]. (3.46)

We summarize below.

Theorem 3 Let Lc ∈ L+
ellip be a comparison tensor, L(x, t) ∈ L+

ellip for t ∈ [0, 1] such that the
effective tensor Le(t) is well-defined by (3.5) and (3.7), Γi be the coefficient tensors of the expansion
(3.13), E ∈ U be a nonzero matrix, ρg = ρg(Lc,E) > 0 be given by (2.2), and C ≥ 0 be given by
(3.31) and (3.32).

(i) (Bound) The effective tensor Le(t) satisfies (3.46), i.e.,

Le(t)− Γ0 − tΓ1 − t2Γ2 ≤ t3(Γ−1
3 + tρgC)−1 ∀ t ∈ [0, 1]. (3.47)

(ii) (Attainment condition) Equality holds for (3.47) if and only if the solution gt ∈ G to
the inhomogeneous Eshelby inclusion problem (3.6) and the solution g1 to the homogeneous
Eshelby inclusion problem (3.10)1 satisfy that for some ck ∈ C and pα ∈ R,{

gt − tg1 =
∑

k∈K∩Sg(L,E) ûk ⊗ k̂ exp(ik · x), ûk = ckNEk̂.

E · (gt − tg1) =
∑N

α=0 pαχα
∀ t ∈ [0, 1].

4 Bounds on the effective compliance tensors

We remark that the exposition of this section is parallel to the last section and the relevant cal-
culations proceed likewise. This is not completely obvious; appropriate notations are essential for
uncovering this similarity and the corresponding quantities have different physical meanings.
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4.1 Series expansions of the divergence-free fields and effective compliant ten-
sors

For the inhomogeneous medium (3.1) and an average applied stress P ∈ U, we can alternately
formulate the problem (3.2) as follows: find σ∗ ∈ P such that

M∗(x)(σ∗ + P) ∈ G⊕ U, (4.1)

where

M∗(x) = [L∗(x)]−1 = L−1
α if x ∈ Ωα, α = 0, · · · , N.

Let Mc = L−1
c ,

M(x, t) = Mc + t(M∗(x)−Mc) ∈ L+
sym (4.2)

be the compliance tensor interpolating between the homogeneous comparison medium Mc and the
inhomogeneous medium M∗(x) when t varies in [0, 1]. For any P ∈ U, define

Ed(P, t) = P ·Me(t)P = min
σ∈P

∫
−
Y

[(σ + P) ·M(x, t)(σ + P)]. (4.3)

The associated Euler-Lagrangian equation implies that the minimizer σt ∈ P satisfies

M(x, t)(σt + P) ∈ G⊕ U. (4.4)

Clearly, if t = 0, the medium is homogeneous, and the solution to (4.4) satisfies σt = 0 and
Ed(P, 0) = 0. Assume a small perturbation, i.e., 0 < t << 1. It can be shown that the solutions to
(4.4) can be written as

σt = tσ1 + t2σ2 + t3σ3 + · · · . (4.5)

Inserting the above expression into (4.4) and arranging terms according to the order of t, we find

[Mc + t(M∗(x)−Mc)](P + tσ1 + t2σ2 + t3σ3 + · · · ) ∈ G⊕ U, (4.6)

which implies that σi ∈ P (i = 1, 2, · · · ) necessarily satisfy{
Mcσ1 + (M∗(x)−Mc)P ∈ G⊕ U if i = 1,

Mcσi + (M∗(x)−Mc)σi−1 ∈ G⊕ U if i > 1.
(4.7)

Let F =
∫
−Y (M∗(x)−Mc)P and g̃1 ∈ G be such that

g̃1 + F = Mcσ1 + (M∗(x)−Mc)P. (4.8)

Operating Lc on both sides of the above equation yields

Lcg̃1 − LcM∗(x)P ∈ P⊕ U, (4.9)

which can be identified as a homogeneous Eshelby inclusion problem (5.2) with eigenstress−LcMαP
on Ωα (α = 0, · · · , N). By (4.3) and (4.5) we have the following expansion:

Me(t) =

∞∑
i=0

tiΛi = Λ0 + tΛ1 + t2Λ2 + t3Λ3 + o(t3). (4.10)
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To find the expansion coefficient tensors Λi, we differentiate (4.3) with respect to P and, by (4.3),
(4.6) and (4.10), obtain

2

∞∑
i=0

tiΛiP = 2McF + 2t

[∫
−
Y

M∗(x)−Mc

]
P + 2t

∫
−
Y

(M∗(x)−Mc)σt.

Therefore,

Λ0 = Mc, Λ1 = −Mc +

∫
−
Y

M∗(x), (4.11)

and

Λi+1P =

∫
−
Y

(M∗(x)−Mc)σi if i = 1, 2, · · · . (4.12)

Also, we have

(Me(t)−Λ0 − tΛ1 − t2Λ2)P =

∞∑
i=3

tiΛiP = t

∫
−
Y

(M∗(x)−Mc)(σt − tσ1). (4.13)

and the following theorem.

Theorem 4 For any integer i ≥ 1, let Λi be the expansion coefficient tensors satisfying (4.10) and
σi ∈ G satisfy (4.7). Then,∫

−
Y
σi ·Mcσj = −P ·Λi+jP,∫

−
Y
σi · (M∗(x)−Mc)σj = P ·Λi+j+1P,

(4.14)

Again, we note that the above theorem implies that

P ·Λ2iP = −
∫
−
Y
σi ·Mcσi,

P ·Λ2i+1P =

∫
−
Y
σi · (M∗(x)−Mc)σi,

(4.15)

meaning that to determine the coefficient tensors Λ0, · · · ,Λ2i+1, it is sufficient to solve (4.7) for
σ1, · · · ,σi. The proof of the above Theorem is similar to that of Theorem 2 and will not be
repeated here.

4.2 A dual differential identity

Parallel to Section 3.2, we derive a differential identity for the effective compliant tensor Me(t) in
this section. Differentiating (4.3) with respect to t, we obtain

P · dM
e(t)

dt
P =

∫
−
Y

(σt + P) · (M∗(x)−Mc)(σt + P). (4.16)

By (4.2) we rewrite the right hand side of the above equation as∫
−
Y

{1

t
(σt + P) ·M(x, t)(σt + P)− 1

t
(σt + P) ·Mc(σt + P)

}
=

1

t

[
−
∫
−
Y
σt ·Mcσt + P · (Me(t)−Mc)P

]
,
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which implies the following identity

tP · dM
e(t)

dt
P = −

∫
−
Y
σt ·Mcσt + P · (Me(t)−Mc)P ∀ t ∈ (0, 1). (4.17)

Let

Y(t) = Me(t)−Λ0 − tΛ1 − t2Λ2. (4.18)

Then ∫
−
Y
σt ·Mcσt =

∫
−
Y

(σt − tσ1 + tσ1) ·Mc(σt − tσ1 + tσ1)

=

∫
−
Y

[t2σ1 ·Mcσ1 + 2tσ1 · Lc(σt − tσ1) + (σt − tσ1) ·Mc(σt − tσ1)]

= −t2P ·Λ2P− 2P ·Y(t)P +

∫
−
Y

(σt − tσ1) ·Mc(σt − tσ1) (4.19)

where for the last equality we have used (4.15)1 with i = 1 and, by (1.6), (4.7)1, (4.12) and (4.13),
the identity∫

−
Y
σ1 ·Mc(σt − tσ1) = −P ·

∫
−
Y

(M∗(x)− Lc)(σt − tσ1) = −1

t
P ·Y(t)P.

By (3.23) and (3.25) we can rewrite (4.17) as

tP · dM
e(t)

dt
P = −

∫
−
Y

(σt − tσ1) ·Mc(σt − tσ1) + P · (t2Λ2 + 2Y(t) + Me(t)−Mc)P.

Inserting dMe(t)
dt = dY(t)

dt + Λ1 + 2tΛ2 into the above equation, we obtain

P · [tdY(t)

dt
− 3Y(t)]P = −

∫
−
Y

(σt − tσ1) ·Mc(σt − tσ1) ∀ t ∈ (0, 1). (4.20)

The above differential equality has profound implications in the behavior of the flow t 7→Me(t), as
will be shown shortly.

4.3 Proof of the dual (lower) bound

As in Section 3.3, below we derive a differential inequality for Me(t). We first focus on the first
term on the right hand side of (4.20). Applying Lemma 1, (2.8) to σt − tσ1, we have that for any
nonzero E ∈ U,∫

−
Y

(σt − tσ1) ·Mc(σt − tσ1) ≥ ρσ(Lc,E)

∫
−
Y
|E · (σt − tσ1)|2. (4.21)

Subsequently, for brevity we write ρσ(Lc,E) briefly as ρσ when there is no danger of confusion. By
the Jensen’s inequality we bound the right hand side of (4.21) from below as∫

−
Y
|E · (σt − tσ1)|2 ≥

N∑
α=0

θα

[∫
−

Ωα

E · (σt − tσ1)
]2

=
N∑
α=0

θα|E ·Pα|2. (4.22)
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where |Ωα| denotes the volume of the domain Ωα,

Pα =

∫
−

Ωα

(σt − tσ1) (α = 0, · · · , N). (4.23)

Since σt, σ1 ∈ P, by (4.23) and (4.13) we have

N∑
α=0

θαPα = 0,

N∑
α=0

θαMαPα =
1

t
Y(t)P. (4.24)

Therefore, to bound from below the right hand side of (4.22) we consider the algebraic minimization
problem

min
{ N∑
α=0

1

|Ωα|
|E ·Pα|2 : Fα (α = 0, · · · , N) satisfy (4.24)

}
=: Qd(

1

t
Y(t)P). (4.25)

As before, we can verify that the above minimum Qd(1
tY(t)P) is nonnegative and depends on its

argument quadratically, see footnote on page 12. Therefore, we can identify a nonnegative tensor

D ∈ L+
sym, independent of t, such that

Qd(
1

t
Y(t)P) =

1

t2
P ·Y(t)DY(t)P. (4.26)

By (4.21), (4.22), (4.25) and (4.26) we conclude that∫
−
Y

(σt − tσ1) ·Mc(σt − tσ1) ≥ ρσ
t2

P ·Y(t)DY(t)P. (4.27)

By (4.20) and (4.27) we arrive at

t
dY(t)

dt
+
ρσ
t2

Y(t)DY(t)− 3Y(t) ≤ 0 ∀ t ∈ (0, 1). (4.28)

Let Y(t) = Ỹ(t)t3. Then equation (4.28) implies that

dỸ(t)

dt
+ ρσỸ(t)DỸ(t) ≤ 0 ∀ t ∈ (0, 1). (4.29)

Assume that the tensor

Ỹ0(t) =
(
Λ−1

3 + tρσD
)−1

= Λ3

(
II + tρσDΛ3

)−1
(4.30)

is well-defined for t ∈ [0, 1]. Then direct calculations reveal that Ỹ0(t) satisfies that{
dỸ0(t)
dt + ρσỸ0(t)DỸ0(t) = 0 if t ∈ (0, 1),

Ỹ0(t) = Λ3 if t = 0.
(4.31)

Setting Ỹ1(t) = Ỹ0(t)− Ỹ(t), by (4.29) and (4.31) we obtain{
dỸ1(t)
dt + Ỹ1(t)B′ + B

′T Ỹ1(t) + ρσỸ1(t)DỸ1(t) ≥ 0 if t ∈ (0, 1),

Ỹ1(t) = 0 if t = 0.
(4.32)

where B′ = ρσDỸ(t). We notice that the above equations are the same Riccati differential equations
as in (4.32). Similar argument as for Theorem 3 implies that

Ỹ1(t) ≥ 0 if t ∈ [0, 1]. (4.33)

We summarize below.
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Theorem 5 Let Lc ∈ L+
ellip be a comparison tensor, M(x, t) ≥ 0 for t ∈ [0, 1] such that the effective

tensor Me(t) is well-defined by (4.3), Λi be the coefficient tensors in the expansion (4.10), E ∈ U
be a nonzero matrix, ρσ = ρσ(Lc,E) > 0 be given by (2.3), and D ∈ L+

sym be given by (4.25) and
(4.26).

(i) (Bound) The effective tensor Me(t) satisfies (4.33), i.e.,

Me(t)−Λ0 − tΛ1 − t2Λ2 ≤ t3(Λ−1
3 + tρσD)−1 ∀ t ∈ [0, 1]. (4.34)

(ii) (Attainment condition) Equality holds for (4.34) if and only if the solution σt ∈ P to the
inhomogeneous Eshelby inclusion problem (4.4) and the solution σ1 ∈ P to the homogeneous
Eshelby inclusion problem (4.7)1 satisfy that for some ck ∈ C and pα ∈ R,{
σt − tσ1 =

∑
k∈K∩Sσ(L,E) σ̂k exp(ik · x), σ̂k = ck[LE− L(Nω)⊗ k̂].

E · (σt − tσ1) =
∑N

α=0 pαχα
∀ t ∈ [0, 1].

5 Explicit bounds in terms of average Eshelby tensors

As mentioned before, the average Eshelby tensors are important for the analysis based on the
Eshelby’s solutions, in the Mori-Tanaka’s theory, and the models in account of the surface and
interface effects. In our approach, the average Eshelby tensors for the homogeneous problem provide
initial conditions as t → 0 for the applications of the comparison theorem. The resulting energy
bounds therefore depend on the microstructure through the average Eshelby tensors and a residual
term. The residual term can often be bounded from below or above by algebraic conditions of the
media, but its exact evaluation requires knowledge of the actual field on the inclusion. To obtain
the microstructure-independent bounds, we may further perform a maximization problem over all
possible average Eshelby tensors. Therefore, a characterization of all possible average Eshelby
tensors is important for the quality of the obtained microstructure-independent bounds. Further,
the characterization of the set of average Eshelby tensors is also useful for classifying microstructues
and the solutions to inverse problems.

5.1 Average Eshelby tensors

Below we obtain the Fourier representation of the average Eshelby tensors for the classic and period-
ic Eshelby inclusion problems. Restrictions on the Eshelby tensors follow from this representation.
We remark that due to its applications, particularly in the framework of Mori-Tanaka theory, the
classic homogeneous Eshelby inclusion problems in Rn have been addressed by many authors in a
variety of situations. The periodic Eshelby inclusion problems in two dimensions are addressed in
Liu (2010). Also, the reader is cautioned that our formulation of the Eshelby inclusion problem
and definition of the average Eshelby tensor are slightly different from the usual convention; we use
eigenstress instead of eigenstrain as the source term. Certain properties including the symmetry
and positive-definiteness of the Eshelby tensors are more transparent in this convention.

Let Pα ∈ U (α = 0, · · · , N) be the eigenstress on the αth-phase. For a piecewise-constant
eigenstress

P∗ =

N∑
α=0

Pαχα, (5.1)
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and homogeneous comparison medium Lc ∈ L+
ellip, the periodic homogeneous Eshelby inclusion

problem is to find g ∈ G such that

Lcg + P∗ ∈ P⊕ U. (5.2)

In Fourier space, the above equation implies that

ĝ(k) = −
N∑
α=0

[N(Pαk̂)]⊗ k̂χ̂α(k),

where we recall k̂ = k/|k| and N is the inverse matrix of (L)piqj(k̂)i(k̂)j . Therefore, by the
Parseval’s theorem we have

θαḡα :=

∫
−
Y
χαg = −

∑
k∈K

N∑
β=0

[NPβk̂]⊗ k̂χ̂conj
α (k)χ̂β(k). (5.3)

The above equation can be rewritten as∫
−
Y
χαg = −

N∑
β=0

TαβPβ, (5.4)

where Tαβ is given by

(Tαβ)piqj =
∑
k∈K

(N)pq(k̂)i(k̂)jχ̂
conj
α (k)χ̂β(k) (5.5)

and can be recognized as the average Eshelby tensor.
From the representation (5.5), we immediately obtain the following properties of the linear

mapping Tαβ : U→ U:

(i) Tαβ = (Tαβ)conj = Tβα ∀α, β = 0, · · · , N ;

(ii) (Tαβ)piqj = (Tαβ)qjpi ∀α, β = 0, · · · , N ;

(iii)
∑N

β=0 Tαβ = 0 ∀α = 0, · · · , N ;

(iv)
∑N

α,β=0 Pα ·TαβPβ =
∫
−Y g · Lcg ≥ 0 ∀Pα ∈ U (α = 0, · · · , N);

In addition, we notice that

∑
k∈K

χ̂conj
α (k)χ̂β(k) =

∫
−
Y

(χα − θα)(χβ − θβ) =

{
θα(1− θα) if α = β,

−θαθβ if α 6= β.

5.2 Upper bound

We now relate the coefficient tensors Γi (i = 2, 3) with the average Eshelby tensors Tαβ defined
above. From (3.15) and (5.4), we have

Γ2 = −
N∑

α,β=0

MLαTαβMLβ. (5.6)
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Let

γ =

∫
−
Y

(
g1 −

N∑
α=0

ḡαχα

)
· (L∗(x)− Lc)

(
g1 −

N∑
α=0

ḡαχα

)
,

Γ3B =

N∑
α=0

N∑
β′=0

N∑
β=0

θα
θβθβ′

MLβ′T
αβ′MLαTαβMLβ.

(5.7)

Then by (3.18) and (5.3) we have

F · Γ3F =

∫
−
Y

(
g1 −

N∑
α=0

ḡαχα +

N∑
α=0

ḡαχα

)
· (L∗(x)− Lc)

(
g1 −

N∑
α=0

ḡαχα +

N∑
α=0

ḡαχα

)
= γ +

∫
−
Y

( N∑
α=0

ḡαχα

)
· (L∗(x)− Lc)

( N∑
α=0

ḡαχα

)
= γ + F · Γ3BF,

(5.8)

where the last equality follows from (5.3)-(5.7). If L∗(x) − Lc ≤ 0, it is clear that γ ≤ 0 and
Γ3 ≤ Γ3B. Therefore, the bound (3.46) can be rewritten as

Le(t)− Γ0 − tΓ1 − t2Γ2 ≤ t3(Γ−1
3B + tρgC)−1 ∀ t ∈ [0, 1]. (5.9)

From (3.14), (5.6) and (5.7) we see that the above upper bound explicitly depends on the average
Eshelby tensors of the microstructure. If we have a good estimate or precise calculation of the
average Eshelby tensors, the above bound is presumably much better than the microstructure-
indpendent bound, especially for high-contrast composites.

5.3 Dual bound — lower bound

Similarly, We can relate the coefficient tensors Λi (i = 2, 3) with the average Eshelby tensors Tαβ.
By (4.9) we have that (M =

∫
−Y M∗(x))

σ1 = Lcg̃1 + Lc
(
M−M∗(x)

)
P,

and hence, by (5.3)-(5.4), obtain

θασ̄α :=

∫
−
Y
σ1χα = Lc

(∑N
β=0 TαβLcMMβP + θα(M−Mα)P

)
. (5.10)

Therefore, by (4.12) we find that

Λ2P =

∫
−
Y

(M∗(x)−Mc)σ1 =

N∑
α=0

MMα

∫
−
Y
σ1χα

=
N∑
α=0

[
MMαLc

N∑
β=0

TαβLcMMβ + θαMMαLc(M−Mα)
]
P.

That is,

Λ2 =

N∑
α=0

N∑
β=0

MMαLcT
αβLcMMβ +

N∑
α=0

θα(M− MMα)Lc(M−Mα). (5.11)
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Further, let

γd =

∫
−
Y

(
σ1 −

N∑
α=0

σ̄αχα

)
· (M∗(x)−Mc)

(
σ1 −

N∑
α=0

σ̄αχα

)
,

Λ3B =
N∑

α,β,β′=0

θα
θβθβ′

MMβ′LcT
αβ′LcMMαLcT

αβLcMMβ

+ 2

N∑
α,β′=0

θα
θβ′

MMβ′LcT
αβ′LcMMαLc(M−Mα) +

N∑
α=0

θα(M−Mα)LcMMαLc(M−Mα).

(5.12)

Then, by (4.15) we have

P ·Λ3P =

∫
−
Y

(
σ1 −

N∑
α=0

σ̄αχα +

N∑
α=0

σ̄αχα

)
· (M∗(x)−Mc)

(
σ1 −

N∑
α=0

σ̄αχα +

N∑
α=0

σ̄αχα

)
= γd +

∫
−
Y

( N∑
α=0

σ̄αχα

)
· (M∗(x)−Mc)

( N∑
α=0

σ̄αχα

)
= γd + P ·Λ3BP,

(5.13)

If M∗(x) −Mc ≤ 0, it is clear that γd ≤ 0 and Λ3 ≤ Λ3B. Therefore, the bound (4.34) can be
rewritten as

Me(t)−Λ0 − tΛ1 − t2Λ2 ≤ t3(Λ−1
3B + tρσD)−1 ∀ t ∈ [0, 1]. (5.14)

From (4.11), (5.11) and (5.12) we see that the above dual bound (i.e., lower bound for Le(t))
explicitly depends on the average Eshelby tensors of the microstructure. If we have a good estimate
or precise calculation of the average Eshelby tensors, the above bound is much better than the
microstructure-indpendent bound, especially for high-contrast composites.

6 Summary and Discussion

In this paper we present a differential approach to microstructure-dependent bounds for multiphase
composites. Based on the perturbation method, we derive a differential inequality satisfied by the
effective tensors with the initial condition determined by solving the homogeneous Eshelby inclu-
sion problem. The relevant differential equations are a Riccati differential system. An application
of comparison theorem yields the desired microstructure-dependent bounds in terms of the average
Eshelby tensors. Since the average Eshelby tensors is much easier to exactly compute or reason-
ably estimate based on micrographs of the microstructures of the composites, the microstructure-
dependent bounds are unsurprisingly much tighter than the microstructure-independent Hashin-
Shtrikman’s bounds.

Although the final explicit bounds (5.9) and (5.14) in terms of the average Eshelby tensors
still require the usual condition of well-orderedness, the bounds (3.47) and (4.34) are valid for any
comparison tensor Lc. With this additional degree of freedom, we anticipate the bounds (3.47)
and (4.34) are useful in estimating effective properties of non-well-ordered composites such as
polycrystals and improving bounds for multiphase composites where it is known that the Hashin-
Shtrikamn bounds are no longer optimal [26].
Acknowledgement. The author gratefully acknowledges the support of NSF under Grant No.
CMMI-1238835 and AFOSR (YIP-12). He also thanks the anonymous reviewer for pointing out
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