
Contents

1 Introduction 1

2 Maxwell stress and Toupin’s formulation 5

3 Energy formulation and associated boundary value problems 8
3.1 Free energy of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Euler-Lagrange equations and boundary conditions . . . . . . . . . . . . . . . . . . . 10
3.3 Geometric and constitutive linearization: general procedure . . . . . . . . . . . . . . 15

4 Theories of typical media and applications 16
4.1 Nonlinear dielectric elastomer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Piezoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Polarization gradient theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Theory of flexoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Generalization to include magnetization 23
5.1 Free energy and boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Nonlinear magnetic elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Magneto-electric materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Piezo-magneto-electric materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Applications 26
6.1 Stretching of a soft ellipsoid in an external electric field . . . . . . . . . . . . . . . . 26
6.2 Magnetoelectric effects of magneto-electric elastomers . . . . . . . . . . . . . . . . . 29
6.3 Bending of flexoelectric films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Summary and discussion 34

8 Appendix 35
A Higher order variational calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B Interfacial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C Alternative variational formulations of the nongradient theory . . . . . . . . . . . . . 37



An energy formulation of continuum magneto-electro-elasticity with

applications

Liping Liu
Department of Mathematics, Rutgers University, NJ 08854

Department of Mechanical & Aerospace Engineering, Rutgers University, NJ 08854

Article published at JMPS, 63, 451-480, 2014.

Abstract

We present an energy formulation of continuum electro-elasticity and magneto-electro-elasticity.
Based on the principle of minimum free energy, we propose a form of total free energy of the sys-
tem in three dimensions, and then systematically derive the theories for a hierarchy of materials
including dielectric elastomers, piezoelectric ceramics, ferroelectrics, flexoelectric materials, mag-
netic elastomers, magneto-electric materials, piezo-electric-magnetic materials among others. The
effects of mechanical, electrical and magnetic boundary devices, external charges, polarizations and
magnetization are taken into account in formulating the free energy. The linear and nonlinear
boundary value problems governing these materials are explicitly derived as the Euler-Lagrange
equations of the principle of minimum free energy. Finally, we illustrate the applications of the
formulations by presenting solutions to a few simple problems and give an outlook of potential
applications.

1 Introduction

The classic subjects of electrostatics, magnetostatics and elasticity have been firmly established in
the last few centuries. For a continuum deformable body Ω ⊂ R3, the electric, magnetic and elastic
state of the body in static equilibrium necessarily satisfy the Maxwell equations and mechanical
balance laws:

curle = 0, divd = ρe, d = ε0e + p + pe, (1.1a)

curlh = 0, divb = 0, b = µ0(h + m + me), (1.1b)

F = Gradχ, divσtot = f e, σtot = σTtot. (1.1c)

Here, what the symbols stand for is as follows: e - electric field, d - electric displacement, p (resp.
pe) - intrinsic (resp. external) polarization, ρe - external charge density; h - magnetic field, b
- magnetic flux, m (resp. me) - intrinsic (resp. external) magnetization; χ - deformation, F -
deformation gradient, σtot -total stress, f e - external body force; ε0 (resp. µ0) - electric permit-
tivity (resp. magnetic permeability) of vacuum. The classic uncoupled theories of electrostatics,
magnetostatics and elasticity for continuum media are completed by providing constitutive laws
such as

d = d(p), b = b(m), σtot = σtot(F).
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In the era of nanotechnology and bioengineering, much of attention has been focused on multi-
functional or multiferroic materials where strain, polarization and magnetization are simultaneously
coupled. These materials have broad applications ranging from the technologies of actuators, sen-
sors, imaging devices to smart self-adaptive structures, artificial muscles, etc (Fiebig, 2005; Nan
et al., 2008). Further, to address novel phenomena observed in complex and heterogeneous sys-
tems such as granular media and composites, it is often necessary to consider nonlocal effects that
motivate gradient theories. These issues have been addressed in thematic topics of strain gradient
theory (Fleck et al., 1994), polarization gradient theory (Mindlin, 1968; Buchanan et al., 1989), flex-
oelectricity among others (Tagantsev, 1986; Majdoub et al., 2008). The literature, however, lacks
of a unified treatment that considers general magneto-electro-elastic materials and their gradient
effects.

Since the seminal definitive work of Toupin (1956, 1959) that will be briefly reviewed in § 2,
the key ingredients of a theory for electro-elastic materials have been well understood and are
worthwhile to mention. First, a somewhat peculiar stress term, namely, the Maxwell stress, emerges
from electrostatic field such that the elastic state and electric state of the body are intrinsically
coupled. As a nonlinear function of electric field, the Maxwell stress gives rise to substantial
difficulty in solving a generic boundary value problem concerning an electro-elastic body. A second
important issue, as always, lies in the formulating generic nonlinear constitutive laws that relate
elastic, electric and magnetic quantities and guarantees reasonable physical behaviors. Toupin
(1956) and many subsequent authors (Eringen, 1963; Mindlin, 1968; McMeeking and Landis, 2005;
Suo et al., 2008; Tian, 2007; Tian et al., 2012) propose such constitutive relations by postulating a
special form of the stored (or internal) energy function, and then systematically restrict the form of
the internal energy function, expand and truncate the internal energy function that will eventually
yield simple, possibly linear, constitutive relations. Toupin (1956) in fact began his theory by
deriving the basic field equations from the Maxwell equations and mechanical balance laws, and
then formulated the constitutive relations by postulating a stored energy function and showed the
equivalence between the field equations and the principle of virtual work.

Nowadays, as we understand that the principle of virtual work (or power) can in general be
regarded as the weak form of a variational principle, it is of significant interest to have a variational
formulation for magneto-electro-elastic bodies based on the physical free energy. Since our main
goal is to identify the static equilibrium of the body at a constant temperature, for clarity we
will assume that the body is at a constant temperature, has constant entropy, and hence the
equilibrium state of the body is dictated by the principle of minimum free energy (Gibbs, 1878, pg.
109; Ericksen, 1991, ch. 1). For a continuum body, the employment of the principle of minimum
free energy requires two critical hypotheses: (i) the set of thermodynamic variables that completely
describe the state of the continuum body and their possible variations, and (ii) the total free energy
of the body when the body is interacting with well-defined boundary devices. It is fruitless to justify
these hypotheses in the framework of continuum theory, though atomistic models may shed light
on the foundation of these hypotheses.

We therefore begin our energy formulation for a magneto-electro-elastic body with these two
hypotheses whereas the rest of theory is mathematically deducted. Also, the Maxwell equation-
s (1.1a)-(1.1b) are taken as premises but the concept of stresses including the Maxwell stress are
regarded as derived notions. The advantages of such a variational formulation based on the prin-
ciple of minimum free energy include: (i) embracing the framework of Gibbs, the proposed energy
formulation admits clear thermodynamic interpretation and may even be proved by the Second
Law in a proper setup (Fosdick and Tang 2007); (ii) we no longer need to forcefully separate the
total stress into the local mechanical stress and the nonlocal Maxwell stress. The Maxwell stress
will emerge naturally from the first variation of the total free energy. This calculation also ex-
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plains the relation between different forms of Maxwell stress in the literature; (iii) novel physical
phenomena such as the gradient effects of strain, polarization and magnetization can be treated
uniformly without introducing additional constitutive relations. All constitutive assumptions will
be lumped into the form of stored/internal energy function of the material; and finally but not the
least important, (iv) in regard of recent development of Γ-convergence and homogenization, the
proposed energy formulation can be directly applied to rigorously derive a hierarchy of theories at
different scaling limits (Tian, 2007) and for lower dimensional bodies (§ 6.3), and to obtain bounds
on the effective properties of composites (Milton, 2012; Liu, 2013).

In addition, we notice that the proposed energy formulation is closely related with the phe-
nomenological theories of Landau (Landau and Liftshitz, 1935; Landau, 1937; Ginzburg and Lan-
dau, 1950) concerning phase transitions of ferromagnetic, ferroelectric and superconducting ma-
terials, and the theory of austenite-martensite phase transition (James and Wuttig, 1998). The
formulation is also closely related with the Hashin-Shtrikman’s variational principle that is impor-
tant for finding bounds on the effective properties of composites (Hashin-Shtrikman, 1962). As
discussed in Liu (2013), the field equations (1.1) in general may enjoy many different variational
formulations whose Euler-Lagrange equations are consistent with the field equations (1.1); neither
the energy functional nor the independent state variables has to be the same. However, for evolu-
tion problems 1 and stability analysis (Chen, 2009; Xu et al., 2010; Dorfmann and Ogden, 2010),
we have to identify the physical free energy and possible variations of state variables based on
the physical gound. A wrong choice may yield erroneous or even opposite results (Liu, 2013, § 6;
Bustamante and Merodio, 2012).

Three solutions of the proposed formulation are presented in § 6. We highlight here a few
interesting results and potential applications. In § 6.1 we address the equilibrium shape of a soft
nonlinear elastic ellipsoid in an applied electric field. The nonlinear boundary value problem is sim-
plified by assuming uniform deformation gradient and then explicitly solved by utilizing a special
property of ellipsoids. The final shape of the body may be regarded as the “best-fitting” ellipsoid
of the actual shape. This strategy can be similarly used to address the equilibrium shape and
relaxation of vesicles and droplets in an electric field where surface energy becomes predominant
(Zhang et al., 2013). In § 6.2 we show a strain-mediated magnetoelectric effects of soft materi-
als. In a simple one-dimensional setting, we solve explicitly the boundary value problem for a
magneto-electro-elastic elastomer. Though the elastomer has neither intrinsic magnetoelectric ef-
fect nor piezoelectric piezomagnetic effects, magnetoelectricity, i.e., the induction of electric field
by magnetic field and vice versa, arises from the Maxwell stress and geometric nonlinear effect. We
finally formally derive the flexoelectric theory for a thin plate from the three-dimensional theory of
flexoelectricity in § 6.3. This calculation is reminiscent of the classic derivation of Kirchhoff-Love
plate theory from elasticity in three dimensions.

The paper is organized as follows. In § 2 we briefly review the classic works of Toupin (1956,
1959) and point out issues associated with the concept of Maxwell stress. In § 3 we postulate a
form of the stored/internal energy function, independent state variables for the body, identity the
total free energy of the body and derive the Euler-Lagrange equations and boundary conditions
for equilibrium states. In this section we assume there is no magnetic coupling for clarity. The
boundary value problems including the interfacial conditions between different type of materials
are explicitly stated in § 3.2. We also outline the general procedure to linearize a general nonlinear
theory for small strain and small polarization in § 3.3. In § 4 we systematically expand and truncate
the internal energy function conforming to the fundamental restrictions of frame indifference and

1For such evolution problems, a phenomenological kinetic law, e.g., velocity ∝ driving force, has to be postulated
to close the system, see e.g. Abeyaratne and Knowles (2006, pg. 50).
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Figure 1: Reference configuration and current configuration of a deformable body

material symmetries. In particular, we identify the internal energy function and the boundary
value problems for elastic elastomers (§ 4.1), isotropic photoelastic materials (§ 4.2), linearized
piezoelectric materials (§ 4.3), ferroelectric materials (§ 4.4), polarization gradient theory (§ 4.5)
and the strain gradient or flexoelectric theory (§ 6.3). From § 5 we begin to include magnetic
coupling, and identify the internal energy function and the boundary value problems for magnetic
elastomers (§ 5.2), magnetoelectric materials (§ 5.3) and piezo-magneto-electric materials (§ 5.4).
In § 6 we present a few applications of the proposed theory.
Notation. Consider a deformable continuum body as shown in Fig. 1. Let ΩR be the reference
configuration, χ : ΩR → Ω be the deformation carrying every material point in the reference con-
figuration to a spatial point in the current configuration, and π : Ω→ ΩR be the inverse mapping.
As standard in continuum mechanics, a material point in the reference (current) configuration is
denoted by Lagrangian coordinate X (Eulerian coordinate x). The operators Grad,Div,Curl and
grad, div, curl are taken with respect to Lagrangian coordinate X and Eulerian coordinate x, re-
spectively. Let u be a vector field with components up and A be a tensor field with components
Api. We follow the usual convention that (Gradu)pi = up,Xi and (DivA)p = Api,Xi , .

Further, let F = Gradχ be the deformation gradient, C = FTF be the Cauchy-Green strain
tensor and J = det F be the Jacobian. Quantities in current configuration are denoted by lower
cases, e.g., the electric field e, electric displacement d, and polarization p (per unit volume),
mechanical stress σ, and (electrical) Maxwell stress σMW. The pull-back of these quantities are
denoted by upper cases:

E = e ◦ χ, D = d ◦ χ, P = p ◦ χ, Σ = σ ◦ χ, ΣMW = σMW ◦ χ.

Further, in analogy with the familiar concept of Piola-Kirchhoff stress, the differential equations
satisfied by electric field, electric displacement and total stress are much simpler and physical
meanings are more evident for the so-called nominal quantities. For example,

D̃ = JF−1D (1.2)

is the nominal electric displacement such that the charge enclosed in any subbody U ⊂ Ω is given
by

Q =

∫
∂U

d · nds =

∫
∂UR

D̃ ·NdS, (1.3)
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where UR = π(U) is the subbody in the reference configuration, and n (resp. N) is the unit
outward normal on the interface ∂U (resp. ∂UR). We also define

Ẽ = FTE, Σ̃ = JΣF−T , Σ̃MW = JΣMWF−T , P̃ = JP. (1.4)

At the presence of external charge density ρe : Ω→ R and external body force f e : Ω→ R3, by the
Maxwell equations and balance laws (1.1) we have

curle = 0, divd = ρe, d = ε0e + p, −div(σ + σMW) = f e in Ω. (1.5)

The first of the above equation immediately implies that there exists a scalar potential ξ such that
e = −gradξ. By (1.3) or the chain rule we immediately find that

CurlẼ = 0, DivD̃ = ρ̃e, D̃ = ε0JC−1Ẽ + F−1P̃, −Div(Σ̃ + Σ̃MW) = f̃ e in ΩR, (1.6)

where Ẽ = −Gradξ,

ρ̃e = Jρe ◦ χ, f̃ e = Jf e ◦ χ. (1.7)

As one may notice above, we will mostly use direct notion for brevity and transparency in physical
meaning; the Einstein summation over repeated indices is assumed if index notation is in use. The
symbol D will be used for differentiating the internal energy function with respect to independent
state variables. Scalar product (i.e., dot product) between two matrices A,B of the same size are
defined as A ·B = Tr(ABT ) = AijBij . Domains are assumed to be open with smooth boundaries.
The thrust of this work mainly comes from the need of a consistent theory for modeling magneto-
electro-elastic materials instead of mathematical analysis. Therefore, the rigor is comprised to some
extent that we do not normally state conditions of integrability and differentiability.

2 Maxwell stress and Toupin’s formulation

Let V ⊂ R3 be a region containing a smooth distribution of charge ρ : V → R and polarization
p : V → R3. From the very definition of electric field, one may see that electrostatics is coupled
with mechanics. From the Maxwell’s work, it is well-known that an electrostatic field is given by
e = −gradξ for some scalar potential ξ and that the resultant electrostatic force on the charges
and dipoles in a fixed spatial region U ⊂ V can be written as

fU =

∫
∂U

σMWn, σMW := e⊗ d− ε0
2
|e|2I. (2.1)

A classic derivation of the above formula begins from the assertion that the force on a point charge
q and a point dipole p is given by

qe and (grade)p, (2.2)

respectively, see, e.g., Jackson (1999, (1.1) and (5.69)). Therefore, the resultant force on the charges
and dipoles distributed in a subdomain U ⊂ V is given by

fU =

∫
U

felect, felect := ρe + (grade)p, (2.3)

where the vector field felect : V → R3 can be interpreted as the body force due to electrostatic
interactions.
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In continuum mechanics, it is desirable to express balance laws as pointwise differential equa-
tions. We are therefore motivated to seek a local differential form of the force formula (2.3), i.e., a
tensor field σelect : V → R3×3, such that

divσelect = felect in V. (2.4)

Then by the divergence theory, the force on the subdomain U can be rewritten as

fU =

∫
U

divσelect =

∫
∂U

σelectn, (2.5)

where the last equality requires the tensor field σelect be continuous up to ∂U . A special solution
to (2.4) is given by σelect = σMW if (ρ,p) and hence ξ are smooth on V . To see this, by direct
calculations we find that for any x ∈ V ,{

div[(−gradξ)⊗ (−ε0gradξ + p)] = (gradgradξ)(ε0gradξ − p)− ρgradξ,

grad( ε02 |gradξ|2) = ε0(gradgradξ)(gradξ).
(2.6)

Therefore,

divσMW = −ρgrad ξ − (grad grad ξ)p = felect in V.

A critical advantage of rewriting the electrostatic force in terms of the Maxwell stress lies in
that the force formula (2.5) has less stringent requirement on the differentiability of the electric
field. Since non-smooth distributions of charge density and polarization are common in continuum
bodies, e.g., a conductor and a heterogeneous dielectric medium with sharp interfaces, the force
formula (2.5) enables us to calculate the electrostatic force on singular points, lines and interfaces
without ambiguity. On the other hand, replacing the concept of electric body force by Maxwell
stress is often criticized for lack of uniqueness 2 and muddy issues in boundary/interfacial conditions
(Rinaldi and Brenner, 2002; Bustamante et al., 2009b). Further, for a body with spatially varying
permittivity ε(x), a different quantity 3

σ′MW = e⊗ d− ε(x)

2
|e|2I (2.7)

is also referred to as the Maxwell stress. The precise relation between these two expressions, as
well as the derivation, necessity, or even definition of Maxwell stress have been discussed in-depth
in the literature, including the textbooks of Stratton (1941), Melcher (1981), Jackson (1999) and
Kovetz (2000), treatise of Toupin (1956, 1959), Pao (1978), and recent discussions of Rinaldi and
Brenner (2002), Steigmann (2009), Bustamante et al. (2009). Our position agrees with Toupin
(1956, 1959) on the following:

2First, we notice that solutions are not unique, even if a boundary condition is supplemented. If σelect is a solution
to (2.4), then σelect + σ0 is also a solution for any tensor field σ0 : V → R3×3 satisfying{

divσ0 = 0 on V,

σ0n = 0 on ∂V.

3The associated body force is often written as (Stratton 1941, ch. II; Meltcher ch. 3)

f ′elect = ρe−∇ε|e|2 in V.

This formula, however, is consistent with (2.7), i.e., f ′elect = divσ′MW, only if ε(x) is continuous and does not have
sharp interfaces.
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1. The independent variables for describing the local state of an electro-elastic body are the
deformation relative to some natural state and the polarization (Toupin, 1956, § 2).

2. Different expressions of the Maxwell stress arise from different decompositions of the total
energy into internal energy and electric field energy. As remarked by Toupin (1959): “Any
division of energy, momentum, stress and energy flux into electromagnetic and mechanical
components is bound to be somewhat arbitrary, and it is fruitless to attempt an independent
theory of either component.”

3. A particular decomposition of the total stress into mechanical stress and electromagnetic
stress is for “the intuitive guides in the construction of admissible constitutive equations (for
the body) but are otherwise irrelevant” (Toupin, 1956). Toupin has chosen the expression (2.1)
as the electric stress since “it has the same form in all materials” and is “not a state function”
(of deformation gradient and polarization).

Toupin (1956) began his formulation from stress hypothesis, and hence the total stress is a
primitive notion and may be decomposed into

σtot = σ + σMW.

As mentioned above, it was then argued that the Maxwell stress σMW is not a state function
whereas the “mechanical stress” σ is a state function:

σ = σ(F,p),

where (F,p) are the deformation gradient and polarization describing the local state of the body.
The above constitutive postulation, together with the balance of linear and angular momenta and
the Maxwell equations, form a boundary value problem that may be solved to determine all physical
quantities of interest and completes the theory.

Toupin (1956, 1959) also proposed a variational principle for his theory of electro-elastic materi-
als based on the principle of virtual work. To include the Maxwell equation as a consequence of the
principle of virtual work, the electrostatic potential, in addition to the deformation gradient and
polarization, is regarded as one of the independent variables, which, from the standpoint of thermo-
dynamics, somewhat contradicts his prior statement that the local state of the body is described
only by the deformation gradient and polarization (Toupin, 1956, § 2). A more severe conceptual
difficulty lies in that the proposed energy functional has no clear thermodynamic interpretation
and the variational problem turns out to be a min-max problem instead of the usual minimization
problem of the total free energy. These issues with Toupin’s variational formulation have been rec-
ognized by many authors (Brown, 1966) and addressed by Ericksen (2007) using vector potential
associated with electric displacement. A number of alternative variational formulations have been
proposed in the literature. Undoubtedly, the field equations of all formulations are consistent with
each other, consisting of the Maxwell equations and mechanical balance laws, and are equivalent to
the extent of determining the local fields. However, for stability analysis and evolution problems
among others it is necessary to have a variational formulation in terms of the physical free energy
such that upon minimizing the total free energy over the admissible states, all of the field equations
and boundary conditions follow as necessary conditions for a minimizer of the free energy (i.e.,
Euler-Lagrange equations). It is in this spirit that we propose the following energy formulation.
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3 Energy formulation and associated boundary value problems

3.1 Free energy of the system

For clarity we begin with electro-elastics; the theory including magnetic couplings will be developed
in § 5. Consider a deformable body ΩR in an ambient medium of permittivity ε0. Assume that the
ambient medium is elastically trivial, meaning that it has zero elastic stiffness. The body, together
with the ambient medium of permittivity ε0, occupies domain VR. The thermodynamic state of
the body is described by deformation χ : ΩR → Ω and polarization P̃ : ΩR → R3:

x = χ(X), P̃ = P̃(X).

The current configuration Ω = χ(ΩR) depends on the deformation χ, and for ease of notation,
polarization P̃ is extended by zero to domain VR and deformation χ is extended continuously to
domain VR. The precise extension χ to VR \ΩR has no physical consequence, we may choose such
that χ → X quickly away from ∂ΩR. Below we refer to the body ΩR as the system described by
state variables (χ, P̃).

By the Maxwell equation curle = 0, there exists a scalar potential ξ such that the electric field
e = −gradξ. Further, we assume that there exist external distributions of charge ρ̃e : ΩR → R and
dipoles P̃e : ΩR → R3 “attached to” material points, and hence under deformation χ : ΩR → Ω
the external charge and dipole distributions in the current configuration are given by

ρe =
1

J
ρ̃e ◦ π, pe =

1

J
P̃e ◦ π, (3.1)

respectively, where π : Ω→ ΩR is the inverse mapping of χ (cf., Fig. 1). Therefore, by the Maxwell
equation divd = ρe and (1.3) we have

DivD̃ = ρ̃e in VR, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e). (3.2)

Further, we impose some electrostatic boundary conditions on ∂VR and some mechanical boundary
conditions on ∂ΩR. As illustrated in Fig. 2, let ΓD and ΓR be a subdivision of ∂VR and SD and SN
be a subdivision of ∂ΩR. The electrical Dirichlet boundary on ΓD and Robin boundary condition
on ΓR are prescribed as

ξ = ξb on ΓD, k(ξ − ξb)− n · D̃− σ0 = 0 on ΓR, (3.3)

where ξb : ∂VR → R, k : ΓR → [0,+∞) and σ0 : ΓR → R are given boundary data. In addition,
we apply a mechanical body force f̃ e : ΩR → R3, surface traction t̃e on SN , and prescribe the
deformation χ on SD to be χb:{

χ = χb on SD,

applied traction (dead load) = t̃e on SN .
(3.4)

The boundary ∂VR may overlap with part or all of ∂ΩR which, however, does not require a separate
consideration.

For simplicity, we assume that the external charges and dipoles (ρ̃e, P̃e), applied body force f̃ e

and boundary data ξb, k, σ0, t̃
e are defined in the reference configuration and will be independent of

the deformation and polarization (χ, P̃). Mechanical loads f̃ e and t̃e of this kind are referred to as
“dead” loads.

To formulate our theory of electro-elastic materials, we begin with the hypothesis that the
internal/stored energy of the body is additive, admits an internal energy density function Ψ :
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Figure 2: Mechanical and electric boundary conditions are imposed on the reference configuration:
the deformation χ = χ0 on SD and a traction of t̃e is applied on SN ; the electric potential on ΓD is
prescribed as ξ = ξb and a Robin boundary condition is applied on ΓR. SD and SN is a subdivision
of ∂ΩR while ΓD and ΓR is a subdivision of ∂VR.

R3×R3×3×R3×3×3×R3×R3×3 → R at the reference configuration, and hence the internal energy
of the body ΩR with state variables (χ, P̃) is given by

(H1) U [χ, P̃] =

∫
ΩR

Ψ(X; F, G, P̃, Π), (3.5)

where the explicit X-dependence of Ψ reflects that the body may be heterogeneous, and

F = Gradχ, G = GradGradχ, Π = GradP̃.

For brevity, we sometimes omit the explicit X-dependence of Ψ in notation. Let So(3) ⊂ R3×3 be
the group consisting of all rigid rotations and G ⊂ R3×3 be the symmetry group of the underlying
crystals/materials. Then the principle of frame indifference implies

Ψ(F,G, P̃,Π) = Ψ(RF,RG,RP̃,RΠ) ∀ R ∈ So(3); (3.6)

material symmetries imply

Ψ(F,G, P̃,Π) = Ψ(FQ,GQ, P̃,ΠQ) ∀ Q ∈ G, (3.7)

where the components of the third-order tensor GQ are given by (GQ)pij = (G)pkl(Q)ki(Q)lj .
The polarization on the body inevitably induces an electric field penetrating into the ambient

medium in V \ Ω and interacting with boundary devices. To include the nonlocal field energy, we
need to solve for the electric field which in the current configuration is determined by the Maxwell
equation (1.1a). By (1.1a), (1.2), (1.4) and (3.3), in the reference configuration the electrostatic
boundary value problem can be written as

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR, (3.8)

with boundary conditions (3.3).
Following the discussions in Liu (2013), we identify the total free energy of the system as

(H1′) F [χ, P̃] = U [χ, P̃] + Eelect[χ, P̃] + Pmech[χ], (3.9)
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where U [χ, P̃], given by (3.5), is the internal energy,

Eelect[χ, P̃] =
ε0
2

∫
V
|e|2 +

∫
ΓD

ξbN · D̃ +

∫
ΓR

k

2
(ξ)2

=
ε0
2

∫
VR

J |F−TGradξ|2 +

∫
ΓD

ξbN · D̃ +

∫
ΓR

k

2
(ξ)2 (3.10)

is the total electric energy associated with the electric field (the first term) and the boundary
electrical devices (the second and third terms), and

Pmech[χ] = −
∫
SN

t̃e · χ−
∫

ΩR

f̃ e · χ (3.11)

is the familiar potential energy of mechanical loadings.

3.2 Euler-Lagrange equations and boundary conditions

Our interest is to identify the equilibrium state of the body and the effects of external mechanical
and electrical loads. To this end, we employ the principle of minimum free energy, i.e., the equi-
librium state (χ, P̃), by definition, is such that the free energy is minimized among “all possible
variations” of the state variables:

min
(χ,P̃)∈S

F [χ, P̃]. (3.12)

As remarked by Ericksen (1991, p7), we have to “exercise some judgement in deciding what these
(all possible variations) might be”. Also, it is unlikely that “possible variations” are unique and
universal for all materials. Our judgement concerning the admissible space for state variables and
their possible independent variations constitutes the second hypothesis of our theory.
(H2) Denote the admissible space of state variables by

(χ, P̃) ∈ S, (3.13)

which will be specified later for typical materials. For a given state (χ, P̃) ∈ S, possible independent
infinitesimal variations include (δ ∈ R and |δ| << 1):

1. Variation of polarization:

χ→ χδ = χ, P̃→ P̃δ = P̃ + δP̃1; (3.14)

2. Variation of deformation:

χ→ χδ = χ + δχ1, P̃→ P̃δ = P̃. (3.15)

Variations of polarization

We now derive the Euler-Lagrange equations and boundary conditions associated with the varia-
tional principle (3.12). For variations (3.14), it is clear that

d

dδ
U [χδ, P̃δ]

∣∣∣∣
δ=0

=

∫
ΩR

[DP̃Ψ · P̃1 +DΠΨ ·GradP̃1]. (3.16)

10



To find the change of electric field to the leading order, we assume that

ξδ = ξ + δξ1 + o(δ), D̃δ = D̃ + δD̃1 + o(δ). (3.17)

Then by (3.10) we have

Eelect[χ,Pδ] = Eelect[χ,P] + δT1 + o(δ)

where

T1 =

∫
VR

ε0J(F−TGradξ) · (F−TGradξ1) +

∫
ΓD

ξbN · D̃1 +

∫
ΓR

kξξ1. (3.18)

By (3.8), (3.3) and (3.17), ξ1 and D̃1 satisfy
DivD̃1 = 0, D̃1 = −ε0JC−1Gradξ1 + F−1P̃1 in VR,

ξ1 = 0 on ΓD,

kξ1 −N · D̃1 = 0 on ΓR.

(3.19)

By the divergence theorem we have∫
∂VR

(ξD̃1) ·N =

∫
VR

Div(ξD̃1) =

∫
VR

Gradξ · D̃1 + ξDivD̃1 =

∫
VR

Gradξ · D̃1,

where the last equality follows from (3.19)1. Inserting the above equation into (3.18) we obtain

T1 =

∫
VR

Gradξ · F−1P̃1 −
∫
∂VR

(ξD̃1) ·N +

∫
ΓD

ξbN · D̃1 +

∫
ΓR

kξξ1

=

∫
ΩR

P̃1 · F−TGradξ, (3.20)

where the last equality follows from the boundary conditions (3.3) and (3.19)3. Therefore, the first
variation of the free energy associated with (3.14) is given by

d

dδ
F [χ, P̃δ]

∣∣∣∣
δ=0

=

∫
ΩR

[
(F−TGradξ +DP̃Ψ−DivDΠΨ) · P̃1

]
+

∫
∂ΩR

P̃1 · (DΠΨ)N. (3.21)

Since the above quantity vanishes for arbitrary P̃1, an equilibrium state (χ, P̃) necessarily satisfies{
F−TGradξ +DP̃Ψ−DivDΠΨ = 0 in ΩR,

(DivDΠΨ)N = 0 on ∂ΩR.
(3.22)

Variations of deformation

For variation (3.15), we have

F(X)→ Fδ(X) = F + δF1, G(X)→ Gδ(X) = G(X) + δGradGradχ1,

where F1 = Gradχ1. Algebraic calculations show that

F−1
δ = F−1 − δF−1F1F

−1 + o(δ), Jδ = J [1 + δTr(F−1F1)] + o(δ),

C−1
δ = C−1 − δ(F−1F1C

−1 + C−1FT
1 F−T ) + o(δ). (3.23)
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Further, by (3.8) and (3.3) we see that the electric potential ξδ satisfies
Div[−ε0JδC−1

δ Gradξδ + F−1
δ (P̃ + P̃e)] = ρ̃e in VR,

ξδ − ξb = 0 on ΓD,

k(ξ − ξb)− D̃δ ·N = 0 on ΓR.

(3.24)

Clearly, the actual electric field and hence the electric energy depend on the deformation. To find
the change of electric field to the leading order, we once again assume (3.17) and, by (3.8), find
that

D̃1 = −ε0JC−1Gradξ1 − ε0JTr(F−1F1)C−1Gradξ

+ε0J(F−1F1C
−1 + C−1FT

1 F−T )Gradξ − F−1F1F
−1P̃. (3.25)

Inserting the above equation into (3.24) and keeping the terms of order δ, we obtain
DivD̃1 = 0 in VR,

ξ1 = 0 on ΓD,

kξ1 − D̃1 ·N = 0 on ΓR.

Multiplying the first of the above equations by ξ, by the divergence theorem we find that∫
∂VR

ξD̃1 ·N−
∫
VR

Gradξ · D̃1 = 0. (3.26)

By (3.25) we rewrite the above equation as∫
VR

ε0JGradξ ·C−1Gradξ1 = −
∫
∂VR

ξD̃1 ·N +

∫
VR

Gradξ ·
[
− ε0JTr(F−1F1)C−1Gradξ

+ε0J(F−1F1C
−1 + C−1FT

1 F−T )Gradξ − F−1F1F
−1P̃

]
. (3.27)

Further, by (3.23) we find that

Eelect[χδ, P̃] = Eelect[χ, P̃] + δVar1 + o(δ), (3.28)

where

Var1 =
ε0
2

∫
VR

[
JTr(F−1F1)|F−TGradξ|2 − JGradξ · (F−1F1C

−1 + C−1FT
1 F−T )Gradξ

+2JGradξ ·C−1Gradξ1

]
+

∫
ΓR

kξξ1 +

∫
ΓD

ξbD̃1 ·N.

Inserting (3.27) into the above equation we obtain

Var1 =

∫
VR

[
− ε0

2
JTr(F−1F1)|E|2 +

ε0
2
JE · (F1F

−1 + F−TFT
1 )E + E · F1F

−1P̃
]

=

∫
VR

F1 ·
[
− ε0

2
J |E|2F−T + E⊗ D̃

]
=

∫
VR

F1 · Σ̃MW, (3.29)

where

Σ̃MW = −ε0
2
J |E|2F−T + E⊗ D̃. (3.30)
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By (1.4), we recoganize

σMW =
1

J
Σ̃MWFT = e⊗ d− ε0

2
|e|2I

as the familiar expression of Maxwell stress in the current configuration (cf., (2.1)). Subsequently,
we refer to Σ̃MW as the Piola-Maxwell stress. We remark that the above derivation of the Maxwell
stress has been presented in Tian (2007).

Moreover, the first variation of the internal energy is given by

U [χδ, P̃] = U [χ, P̃] +

∫
ΩR

DFΨ ·Gradχ1 +

∫
ΩR

DGΨ ·GradGradχ1 + o(δ). (3.31)

Integrating by parts, we rewrite the above integrals on the right hand side as∫
ΩR

DFΨ ·Gradχ1 =

∫
∂ΩR

χ1 · (DFΨ)N−
∫

ΩR

χ1 ·Div(DFΨ), (3.32)

and (see Appendix A for details)∫
ΩR

DGΨ ·GradGradχ1 =

∫
ΩR

χ1 ·DivDiv(DGΨ) +

∫
∂ΩR

[(DGΨ)N⊗N] · (Gradχ1)N

−
∫
∂ΩR

χ1 ·
{
τ + (DivDGΨ)N

}
. (3.33)

where the components of the vector field τ : ∂ΩR → R3 are given by

(τ )p = [Λ̃pijNj(δik −NiNk)],k − [Λ̃pijNj(δik −NiNk)],mNmNk, (3.34)

and Λ̃pij are the components of (DGΨ)pij . Further, the components of the symbols on the right
hand side of (3.33) are given by

[(DGΨ)N⊗N]p = Λ̃pijNjNi, [DivDiv(DGΨ)]p = Λ̃pij,ij , [(DivDGΨ)N]p = Λ̃pij,jNi.

In other words, in index form equation (3.33) can be written as∫
ΩR

Λ̃pijup,ij =

∫
∂ΩR

Λ̃pijNjNiup,kNk −
∫
∂ΩR

(τp + Λ̃pij,jNi)up +

∫
ΩR

Λ̃pij,ijup, (3.35)

where up are the components of χ1.
Henceforth, by (3.28), (3.29), (3.31), (3.32) and (3.33), associated with the variation (3.15) the

first variation of the free energy (3.9) of the system is given by

d

dδ
F [χδ, P̃]

∣∣∣∣
δ=0

=

∫
V
χ1 ·

{
χΩR

[
DivDiv(DGΨ)−DivDFΨ− f̃ e

]
−DivΣ̃MW

}
+

∫
SN

χ1 ·
[
(DFΨ− [[Σ̃MW]])N− τ − (DivDGΨ)N− t̃e

]
+

∫
∂ΩR

[(DGΨ)N⊗N] · (Gradχ1)N, (3.36)

where [[ ]] = ( )+ − ( )− denotes the jump from the exterior (+ side) to the interior of ΩR (− side).
If SN overlaps with ∂VR, the exterior value of Σ̃MW depends on the details of the electrical loading
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devices. Since the above quantity vanishes for arbitrary χ1 satisfying χ1 = 0 on ΓD, an equilibrium
state (χ, P̃) necessarily satisfies

DivDivDGΨ−DivDFΨ−DivΣ̃MW − f̃ e = 0 in ΩR,

DivΣ̃MW = 0 in VR \ ΩR,

(DFΨ)N− (DivDGΨ)N− [[Σ̃MW]]N− τ − t̃e = 0 on SN ,

(DGΨ)N⊗N = 0 on ∂ΩR.

(3.37)

The boundary value problem

In summary, by (3.8), (3.22), (3.21) and (3.36) we conclude that a solution (χ, P̃) to the variational
problem (3.12) necessarily satisfies the following differential equations:

F−TGradξ +DP̃Ψ−DivDΠΨ = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

DivDivDGΨ−DivDFΨ−DivΣ̃MW − f̃ e = 0 in ΩR,

(3.38)

and boundary conditions (3.3), (3.4)1 and
(DΠΨ)N = 0 on ∂ΩR,

(DFΨ)N− (DivDGΨ)N− [[Σ̃MW]]N− τ − t̃e = 0 on SN ,

(DGΨ)N⊗N = 0 on ∂ΩR.

(3.39)

We remark that if the second of (3.38) holds, the second of (3.37) is identically satisfied, and
henceforth, not repeated in (3.38) and subsequent equations. Further, the boundary value problems
(3.38)-(3.39) follow as the Euler-Lagrangian equations for internal energy density function that
depends on polarization, deformation gradient, and polarization gradient and strain gradient, i.e.,
(P̃,GradP̃,Gradχ,GradGradχ). For many materials of interest, it may be sufficient to use a
simpler form of internal energy which will be discussed subsequently.

3.2.1 Nongradient theory of elastic dielectrics

Since Toupin (1956) a frequently-used model for elastic dielectrics assumes that the internal energy
of the body is given by

U [χ, P̃] =

∫
ΩR

Ψ(X; Gradχ, P̃), (3.40)

where the internal energy density Ψ is independent of polarization gradient GradP̃ and strain
gradient GradGradχ. Then the boundary value problem (3.38)-(3.39) can be specialized as

F−TGradξ +DP̃Ψ = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

DivDFΨ + DivΣ̃MW + f̃ e = 0 in ΩR,

(3.41)

with boundary conditions (3.3), (3.4)1 and

(DFΨ)N− [[Σ̃MW]]N− t̃e = 0 on SN . (3.42)

We remark that the first of (3.41) is often interpreted as a constitutive law between the polarization
and electric field.
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3.2.2 Polarization gradient theory

As pioneered by Mindlin (1968), the polarization gradient theory for elastic dielectrics assumes the
following form of internal energy:

U [χ, P̃] =

∫
ΩR

Ψ(X; Gradχ, P̃, GradP̃). (3.43)

Then the boundary value problem (3.38)-(3.39) can be rewritten as
F−TGradξ +DP̃Ψ−DivDΠΨ = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

DivDFΨ + DivΣ̃MW + f̃ e = 0 in ΩR,

(3.44)

with boundary conditions (3.3), (3.4)1, (3.42) and (3.39)1.

3.2.3 Strain gradient (flexoelectric) theory

The internal energy is given by

U [χ, P̃] =

∫
ΩR

Ψ(X; Gradχ, GradGradχ, P̃). (3.45)

Then by (3.38) we obtain
F−TGradξ +DP̃Ψ = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

DivDivDGΨ−DivDFΨ−DivΣ̃MW − f̃ e = 0 in ΩR,

(3.46)

with boundary conditions (3.3), (3.4)1 and (3.39)2,3.

3.2.4 Interfacial conditions

The body ΩR could be inhomogeneous and in particular, there could be a sudden change of material
properties. In terms of the internal energy density function, this sudden change of material prop-
erties can be recognized as interfaces across which the function X 7→ Ψ(X; · · · ) is discontinuous.
Moreover, there could be different types of materials on the two sides of the interfaces. For exam-
ple, the material on one side is sufficiently described by the nongradient theory while the material
on the other side requires a more sophisticated theory such as the polarization gradient theory or
the strain gradient theory. Across these interfaces, the differential equations such as (3.38) shall
be interpreted as interfacial conditions. Although the interfacial conditions can be directly seen
from the differential equations and the kinematic requirements ensuring that the internal energy is
bounded (or integrable), to be clear we list in Appendix B the interfacial conditions across interfaces
between different types of materials.

3.3 Geometric and constitutive linearization: general procedure

The presented general theory is not amenable to solution since (i) the governing electrostatic e-
quation is nonlinear in the reference configuration, and (ii) the frame indifference implies that
any physically reasonable internal energy function Ψ has to be a nonlinear function of state vari-
ables (χ, P̃) and hence the mechanical equilibrium equation is nonlinear as well. We are therefore
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motivated to linearize the theory and obtain explicit solutions to make predictions. The general
procedure of linearization is outlined below whereas specific examples are presented in § 4-5.

For many materials and regimes of interest, the strain and the polarization are small:

S := Gradu = F− I ∼ ε, P̃ ∼ δ, (3.47)

where u(X) = χ(X) − X is the displacement, and ε, δ are two small numbers.4 For materials
without a spontaneous strain and polarization, we may impose that in the absence of external
electrical and mechanical loadings, the trivial state (χ, P̃) = (X, 0) is an equilibrium state that
minimizes the total free energy, i.e.,

∂Ψ

∂F

∣∣∣
(I,0,0,0)

=
∂Ψ

∂G

∣∣∣
(I,0,0,0)

=
∂Ψ

∂P̃

∣∣∣
(I,0,0,0)

=
∂Ψ

∂Π

∣∣∣
(I,0,0,0)

= 0, (3.48)

and that the second derivatives of Ψ are semi-positive-definite:

D2Ψ
∣∣∣
(I,0,0,0)

≥ 0. (3.49)

To arrive at geometric linear theories we may expand and truncate the internal energy density
function Ψ as

Ψ(F,G, P̃,Π) = Ψ(I, 0, 0, 0) + ε2B1(S0,S0) + ε2B2(G0,G0) + δ2B3(P̃0, P̃0) + δ2B4(Π0,Π0)

+ε2B5(S0,G0) + εδB6(S0, P̃0) + εδB7(S0,Π0) + εδB8(G0, P̃0)

+εδB9(G0,Π0) + δ2B10(P̃0,Π0) + εδ2B11(S0, P̃0 ⊗ P̃0) + · · · ,

where Bi (i = 1, · · · ) are bilinear forms of their arguments, and S0 = S/ε, P̃0 = P̃/δ, G0 = G/ε,
Π0 = Π/δ are of order one. Inserting the above truncated energy function into (3.38)-(3.39) and
keeping only the leading order terms for each equations, we will obtain a hierarchy of theories
for different regimes of a := log δ/ log ε that would describe the asymptotic behaviors of the body
for “small strain” and “small polarization”. The interested reader is referred to Tian (2007) for
rigorous derivations of dielectric elastomers and piezoelectric materials in the framework of Γ-
convergence. Below we present only the formal calculations of these theories in § 4-5 instead of
rigorous Γ-convergence argument.

4 Theories of typical media and applications

4.1 Nonlinear dielectric elastomer

From the above analysis, we observe that elasticity and electricity are intrinsically coupled through
the Maxwell stress. Dielectric materials can sustain an electric field before the bound electrons
become free, which is referred to as the dielectric strength. The dielectric strength of materials
is typically at the order 106 − 108V/m, and hence the maximum Maxwell stress (∼ ε|e|2) before
electric breakdown is roughly 106Pa. Therefore, the effect of Maxwell stress is only significant for
soft rubber-like materials with Young’s modulus at the order of 0.1Gpa (1% strain) or less. For
such a soft elastic materials, it is often necessary to use the nonlinear finite deformation theory of
elasticity.

4Dimensionless criterion for δ may be established for “small polarization” by comparing with typical/saturation
polarization.
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To conform with the principle of frame indifference (3.6), the internal energy density Ψ can be
rewritten as

Ψ(F, P̃) = ψ(U,RT P̃) (recall that U = (FTF)1/2, R = FU−1). (4.1)

Further, based on experimental measurements we postulate that the material is a linear dielectrics
and the dielectric tensor is independent of strain U. In other words, if the dielectric tensor of
the body is given by ε ∈ R3×3

sym with respect to a fixed Cartesian frame {e1, e2, e3}, then under
any homogeneous deformation χ(X) = FX, the electric field-polarization relation of the deformed
body in the current configuration is given by

e = RARTp, A = (ε− ε0I)−1. (4.2)

From the above postulation, by (3.41)1 and (4.1) we infer that

e = DP̃Ψ =
1

J
RART P̃ ∀U ∈ R3×3

sym & P̃ ∈ R3.

Therefore,

ψ(U,RT P̃) = Welast(U) +
1

2J
(RT P̃) ·A(RT P̃). (4.3)

It will be convenient to introduce the modified Maxwell stress for linear dielectrics:

Σ̃
′
MW = Σ̃MW −

1

2J
(RT P̃) ·A(RT P̃)F−T in VR,

which, by (1.4) and (4.2), in the current configuration can be expressed as

σ′MW = σMW −
1

2
(RTp) ·A(RTp)I = e⊗ d− d · e

2
I in V. (4.4)

We remark that the above expression of Maxwell stress is particularly popular among authors in flu-
id mechanics (Stratton, 1941; Melcher, 1981). Inserting the above equation into (3.41) and noticing
the identity DFJ

−1 = −J−1F−T , we obtain the following equations in the current configuration:{
divd = ρe, d = −(ε0I + RA−1RTχΩ)gradξ + p + pe in V,

−div(σmech + σ′MW) = f e, σmech = [ 1
JDFWelast(U)FT ] ◦ π in Ω,

(4.5)

where σmech can be identified as the mechanical part of the total stress that is independent of the
polarization of the body.

If, in addition, the deformation is small in the sense that the strain

S := Gradu = F− I
(
u(X) := χ(X)−X

)
(4.6)

is at the order of ε, ε << 1, we can expand and truncate the internal energy function in a neigh-
borhood of F = I as

Welast(U) =
1

2
S ·CS + o(ε2), C =

∂2Welast(U)

∂F∂F

∣∣∣
F=I

,

where the forth-order tensor C : R3×3
sym → R3×3

sym is recognized as the familiar elastic stiffness tensor.
Inserting the above equation into (3.41)-(3.42) and keeping only the leading-order terms in each of
(4.5), we obtain the simplified boundary value problems for dielectric elastomers:{

div[−(ε0I + A−1χΩ)∇ξ + Pe] = ρe in VR,

−div(C∇u + σ′MW) = f e in ΩR,
(4.7)
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with electrical boundary conditions

ξ − ξb = 0 on ΓD, k(ξ − ξb)− n ·D− σ0 = 0 on ΓR, (4.8)

and mechanical boundary conditions{
u = u0 on SD,

(C∇u)n− [[σ′MW]]n− te = 0 on SN .
(4.9)

In the above equations (4.7)-(4.9), as usual, for small strains we no longer differentiate between the
reference and current configurations.

4.2 Photoelasticity

The stress-optic law of photoelasticity can be formulated by setting

ψ(U,RT P̃) = Welast(U) +
1

2J
(RT P̃) ·A(U)(RT P̃). (4.10)

To see this, by (3.41)1 the above internal energy function implies

e = RA(U)RTp, i.e., d = R[ε0I + A(U)−1]RTe.

In other words, the permittivity tensor of the material depends on the strain.
For an isotropic photoelastic materials, i.e., the symmetry group of the material includes all

rigid rotations G = So(3) (cf. (3.7)), the functional dependence of tensor A on strain U is strongly
restricted. To see this, we first notice that for Q ∈ So(3), the transformation F = RU → F′ =
FQ = RUQ =: R′U′ implies that

U′ = QTUQ, R′ = RQ (4.11)

Therefore, by (3.7) we have that for any Q ∈ G = So(3),

Welast(U) +
1

2J
P̃ ·RA(U)RT P̃ = Welast(Q

TUQ) +
1

2J
P̃ ·RQA(QTUQ)QTRT P̃.

Since (U, P̃) can be arbitrarily chosen, the above equation implies that for all Q ∈ So(3),{
Welast(U) = Welast(Q

TUQ),

A(U) = QA(QTUQ)QT .
(4.12)

Clearly, the first of (4.12) is the usual requirement for the strain energy function of isotropic
materials whereas the second of (4.12) implies that A(I) = 1

ε−ε0 I. (ε - the permittivity of the

undeformed material) Further, for small strain U − I ≈ 1
2(S + ST ) ∼ η << 1 we can expand and

truncate the matrix function F 7→ A(U) in a neighborhood of F = I:

A(U) =
1

ε− ε0
I + O(U− I) + o(η),

where the forth-order tensor O : R3×3
sym → R3×3

sym, by the second of (4.12), necessarily satisfies that
for any Q ∈ G = So(3),

Oijkl = Qii′Qjj′Qkk′Qll′Si′j′k′l′ .
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We immediately recognize that the above equation implies the tensor O has to be the same form
as an isotropic elasticity tensor, and hence there are two material constants aµ and aλ such that

O(U− I) = 2aµ(U− I) + aλTr(U− I)I.

In conclusion, the permittivity tensor of the strained material is given by

ε(U) = ε0I + A(U)−1 = ε0I +
[ 1

ε− ε0
I + 2aµ(U− I) + aλTr(U− I)I

]−1

= εI− (ε− ε0)2
[
2aµ(U− I) + aλTr(U− I)I

]
+ o(η).

Recall that the optical birefringence n′ is the deviatoric part of the refractive index matrix n =
(µ0ε)1/2. (Here, the magnetic permeability is assumed to be independent of strain and given by
µ0.) For small strain and linearized elasticity, it is easy to see that the above equation implies the
linear stress-optic law for an isotropic photoelastic materials:

n′ = CBσ
′, (4.13)

where σ′ is the deviatoric stress and CB is referred to as the Brewsters constant. From the above
calculation, we see that the above widely used stress-optic law of birefringence/anisotropy arises
precisely from the isotropy of the photoelastic materials. Similar calculations can be carried out
and yield restrictions on the stress-optic law for general anisotropic photoelastic crystals.

4.3 Piezoelectricity

The theory of piezoelectricity proposed by Voight (1910) can be recovered by adding a coupling
term Cpze(U,R

T P̃) between strain and polarization:

ψ(U,RT P̃) = Welast(U) + Cpze(U,R
T P̃) +

1

2J
(RT P̃) ·A(RT P̃). (4.14)

Naturally, we impose the restrictions (3.48) and (3.49). To conform with (3.48), a simple and linear
coupling term may be postulated as

Cpze(U,R
T P̃) = (RT P̃) ·B(U− I), (4.15)

where B : R3×3
sym → R3 is a third-order tensor characterizing the piezoelectric effects of the body.

For materials with symmetry gourp G, by (3.7) and (4.11) we have that for any Q ∈ G,

Bijk = Qii′Qjj′Qkk′Bi′j′k′

For small strains, upon expansion and truncation we can rewrite the internal energy function
as (recall that S = F− I ∼ ε << 1)

Ψ(F,P) =
1

2
S ·CS + P ·BS +

1

2
P ·AP. (4.16)

Then by (3.41)-(3.42) we obtain the simplified boundary value problems for piezoelectric materials:
∇ξ + B∇u + AP = 0 in Ω,

−div(C∇u + BTP + σ′MW) = f e in Ω,

div(−ε0∇ξ + P + Pe) = ρe in V,

(4.17)
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with boundary conditions (4.8) and (4.9). In addition, piezoelectric materials are typically hard
ceramics with Young’s modulus at the order of 10-100 Gpa (Yang, 2009). Therefore, we can safely
neglect the Maxwell stress σ′MW in (4.17)2 and the boundary condition (4.9)2 since it is at most at
the order of 106 Pa before electric breakdown.

The theory of piezoelectricity is typically formulated by postulating constitutive laws between
stress-electric displacement (σ,D) and strain-electric field (S,E), see e.g. Yang (2009). To recover
these constitutive relations in our formulation, we notice that the first and second of (4.17) can be
interpreted as the constitutive relations{

σ = DSΨ,

E = DPΨ,
⇒

{
σij = CijklSkl +BkijPk,

Ei = BiklSkl +AijPj .

By algebraic calculations we can show that the above relations can be rewritten as{
σij = C ′ijklSkl +B′kijDk,

Ei = B′iklSkl +A′ijDj ,
or

{
σij = C ′′ijklSkl −B′′kijEk,
Di = B′′iklSkl + (A′′ij + ε0δij)Ej ,

where
A′ij = [(A−1 + ε0I)−1]ij ,

B′kij = [(I + ε0A)−1]kmBmij ,

C ′ijkl = Cijkl − ε0Bmij [(I + ε0A)−1]mnBnkl,


A′′ij = (A−1)ij ,

B′′kij = −(A−1)kmBmij ,

C ′′ijkl = Cijkl −BmijAmnBnkl.

Direct calculations yield

Ψ′(S,D) =
1

2
(σ · S + E ·D) =

1

2
S ·C′S + D ·B′S +

1

2
D ·A′D

=
1

2
[σ · S + E · (P + ε0E)] = Ψ +

ε0
2
|E|2.

Therefore, the stability requirement (3.49) in our formulation, i.e., Ψ ≥ 0 for all (S,P) ∈ R3×3
sym×R3,

is stronger than the conventional requirement that Ψ′ ≥ 0 for all (S,D) ∈ R3×3
sym×R3; the polarization

P being the independent variable implies stronger stability conditions than the electric displacement
being the independent variable (Landau and Lifshitz, 1995, § 14 vs. § 18).

4.4 Ferroelectrics

Ferroelectric materials may be phenomenologically described by postulating the internal energy
density:

Ψ(F, P̃,Π) =
1

2
Π ·CpgΠ + ψ(U,RT P̃), (4.18)

where Cpg : R3×3 → R3×3 is a fourth-order positive tensor, and ψ : R3×3
sym × R3 → R is the part

of internal energy density depending on the local strain and polarization. The term 1
2Π ·CpgΠ is

included to reflect the nonlocal exchange effects of polarization.
Below the phase transition temperature (Curie temperature), a ferroelectric body has a sponta-

neous polarization and associated strain which can be modelled by assuming ψ is minimized at, e.g.,
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(U1,p1). By material symmetries (3.7) and (4.11), we immediately infer that ψ is also minimized
at (QTU1Q,Q

Tp1) for all Q ∈ G. By (3.44), the boundary value problem for ξ,χ, P̃ is as follows:
F−TGradξ +DP̃ψ −Div(CpgGradP̃) = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

DivDFψ + DivΣ̃MW + f̃ e = 0 in ΩR,

(4.19)

with boundary conditions (3.3), (3.4)1 and{
(CpgGradP̃)N = 0 on ∂ΩR,

(DFψ)N− [[Σ̃MW]]N− t̃e = 0 on SN .
(4.20)

We remark that the variational principle (3.12), together with the free energy functional (3.9)
and internal energy density (4.18), is referred to as the Landau-Ginzburg-Devonshire theory of
ferroelectrics (Landau, 1937; Ginzburg and Landau, 1950; Devonshire, 1949; 1954; Cao 2008).

4.5 Polarization gradient theory

Introduced by Mindlin (1968), the polarization gradient theory assumes that

Ψ(F, P̃,Π) = ψ(U,RT P̃,RTΠ).

As a generalization of nongradient theories, for simplicity we further assume that

ψ(U,RT P̃,RTΠ) = Welast(U) + Cpze(U,R
T P̃) + Cpg(U,RTΠ)

+
1

2
Π ·CpgΠ +

1

2J
(RT P̃) ·A(RT P̃),

where Cpg(U,RTΠ) is the coupling term between deformation gradient and polarization gradient.
For small strains, by expansion and truncation we rewrite the internal energy function as (recall
that S = F− I):

Ψ(F,P) =
1

2
S ·CS + Π ·BpgS + P ·BpzeS +

1

2
Π ·CpgΠ +

1

2
P ·AP, (4.21)

where by frame indifference (3.6) the tensors Cpg and Bpg shall enjoy the major and minor sym-
metries as the elastic stiffness tensor C. Further, for isotropic media, by material symmetry (3.7)
we infer that Bpze = 0, and Cpg and Bpg shall be of the following form:

(Bpg)piqj = bµ(δpqδij + δpjδiq) + bλδpiδqj , (Cpg)piqj = cµ(δpqδij + δpjδiq) + cλδpiδqj ,

where bµ, bλ and cµ, cλ are constant in analogy with the Lamé constants µ, λ in the isotropic elastic
tensor. Therefore, by (3.44) we have the boundary value problem:

∇ξ + 1
ε−ε0 P− div(Bpg∇u)− div(Cpg∇P) = 0 in Ω,

divD = ρe, D = −ε0∇ξ + P + Pe in V,

−div(C∇u + Bpg∇P)− divσ′MW − f e = 0 in Ω,

(4.22)

with boundary conditions (4.8), (4.9)1 and{
(C∇u + Bpg∇P)n− [[σ′MW]]n− te = 0 on SN ,

(Bpg∇u + Cpg∇P)n = 0 on ∂Ω.
(4.23)

We remark that upon neglecting the effect of Maxwell stress, the above linearized polarization
gradient has been addressed in Buchaman et al. (1989).
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4.6 Theory of flexoelectricity

Flexoelectricity refers to the coupling between strain gradient and polarization and can be modelled
by the internal energy density function of the following form:

Ψ(F,G, P̃) = Welast(U) + Cflexo(RTG,RT P̃) +
1

2J
(RT P̃) ·A(RT P̃), (4.24)

where Cflexo(RTG,RT P̃) reflects the coupling between strain gradient and polarization. To conform
with the restrictions (3.48) and (3.49), a simple flexoelectric coupling term may be postulated as

Cflexo(RTG,RT P̃) = Bg(RTG,RTG) + Bf (RTG,RT P̃),

where Bg and Bf are bilinear forms of their arguments. We remark that an additional term Bg is
necessary for the stability of the trivial solution (F,G, P̃) = (I, 0, 0). By material symmetry (3.7),
these bilinear form shall satisfy that

Bg(RTGQ,R
TGQ) = Bg(RTG,RTG), Bf (RTGQ,R

T P̃Q) = Bf (RTG,RT P̃),

for any Q ∈ G, where (GQ)pij = (G)pkl(Q)ki(Q)lj .
For isotropic media, i.e., G = So(3), the most general bilinear forms of Bg and Bf satisfying

the above identity can be systematically derived, see, e.g., Jaric et al. (2008). For simplicity we
assume a special form of Bg and Bf as follows:

Bg(RTG,RTG) =
g

2
(G)ikk(G)ill, Bf (RTG,RT P̃) = f(P̃)i(G)ikk. (4.25)

Then the boundary value problems (3.46) can be simplified as
F−TGradξ + 1

J(ε−ε0)P̃ + fLapχ = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

−DivDFWelast + Lap(gLapχ + fP̃)−DivΣ̃
′
MW − f̃ e = 0 in ΩR,

(4.26)

with boundary conditions (3.3), (3.4)1 and{
(DFWelast)N− [Grad(gLapχ + fP̃)]N− [[Σ̃

′
MW]]N− t̃e = 0 on SN ,

gLapχ + fP̃ = 0 on ∂ΩR,
(4.27)

where Lap = DivGrad denotes the Laplace operator with respect to Lagrangian coordinates.
To arrive at a linear theory for small strain, keeping only the leading order terms the internal

energy can be written as (recall that u = χ−X)

U [χ,P] =

∫
Ω

[g
2
|∆u|2 + fP ·∆u +

1

2
∇u ·C∇u +

1

2(ε− ε0)
|P|2

]
, (4.28)

and the boundary value problems (4.26)-(4.27) can be rewritten as
−∇ξ = 1

ε−ε0 P + f∆u in Ω,

div(−ε0∇ξ + P + Pe) = ρe in V,

−div(C∇u) + ∆(g∆u + fP)− divσ′MW − f e = 0 in Ω,

(4.29)

with boundary conditions (4.8), (4.9)1, and{
(C∇u)n− [∇(g∆u + fP)]n− [[σ′MW]]n− te = 0 on SN ,

g∆u + fP = 0 on ∂Ω.
(4.30)

Here, again, we no longer differentiate the reference and current configurations for small strains.
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5 Generalization to include magnetization

5.1 Free energy and boundary value problems

The energy formulation concerning electrical-mechanical couplings can be generalized to include
another important physical phenomena: magnetics. The mutual couplings between strain, polar-
ization and magnetization can be modelled by postulating the following form of internal energy

U [χ, P̃, M̃] =

∫
ΩR

Ψ(Gradχ,GradGradχ, P̃,GradP̃, M̃,GradM̃),

where M̃ : ΩR → R3 is the intrinsic magnetization of the body,

Ψ = Ψ(F,G, P̃,Π, M̃,Λ)

is the internal energy density function that depends on deformation gradient, polarization, magne-
tization and their gradients.

To fix the magnetic energy of the system, we need to prescribe the external magnetic sources
and “boundary devices” that interact with the body. For simplicity, we will assume that there
is a distribution of external magnetic moments M̃e : ΩR → R3 on the reference body. For ease
of notation, the intrinsic and external magnetizations are extended by zero to the entire space
R3. Further, upon removing the body and external magnetization an external field he : R3 → R3

permeates into the entire space. In other words, this external field he arises from magnetization
or electric currents at the infinity. Then by the Maxwell equations (1.1b), the total magnetic field
−∇ζ shall satisfy {

div(−gradζ + m + me) = 0 in R3,

−gradζ → he as |x| → +∞,
(5.1)

where (cf., Fig. 1, (1.7) and (3.1))

me(x) =
1

J
M̃e ◦ π(x), m(x) =

1

J
M̃ ◦ π(x).

In the reference configuration, the above equation (5.1) can be rewritten as{
Div[−JC−1Gradζ + F−1(M̃ + M̃e)] = 0 in R3,

−Gradζ → He as |x| → +∞,
(5.2)

where He = he ◦ χ. Then the total free energy can be identified as

F [χ, P̃, M̃] = U [χ, P̃, M̃] + Eelect[χ, P̃] + Emag[χ, M̃] + Pmech[χ], (5.3)

where the magnetic energy is the field energy given by

Emag[χ, M̃] =

∫
R3

µ0

2
|gradζ|2 =

∫
R3

µ0

2
J |F−TGradζ|2.

By similar calculations as in Liu (2013, Eq. 2.14-2.17), we can show that within a constant inde-
pendent of the state variables (χ, P̃, M̃), the magnetic energy can be rewritten as

Emag[χ, M̃] =

∫
R3

µ0

2
J |F−TGradζ ′|2 − µ0

∫
ΩR

He · (M̃ + M̃e), (5.4)
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where ζ ′ satisfies{
Div[−JC−1Gradζ ′ + F−1(M̃ + M̃e)] = 0 in R3,

−Gradζ ′ → 0 as |x| → +∞.
(5.5)

In addition to variations of polarization and deformation, possible independent variations of the
state of the body include variation of magnetization:

M̃→ M̃δ = M̃ + δM̃1.

By similar calculations as in § 3.2, we find the Euler-Lagrange equations and boundary conditions
for a minimizer of the total free energy:

F−TGradξ +DP̃Ψ−DivDΠΨ = 0 in ΩR,

µ0F
−TGradζ +DM̃Ψ−DivDΛΨ = 0 in ΩR,

DivD̃ = ρ̃e, D̃ = −ε0JC−1Gradξ + F−1(P̃ + P̃e) in VR,

Div[−JC−1Gradζ + F−1(M̃ + M̃e)] = 0 in R3,

DivDivDGΨ−DivDFΨ−DivΣ̃MW − f̃ e = 0 in ΩR,

(5.6)

with the boundary conditions (3.3), (3.4)1, (5.1)2, and
(DΠΨ)N = 0, (DΛΨ)N = 0 on ∂ΩR,

(DFΨ)N− (DivDGΨ)N− [[Σ̃MW]]N− τ − t̃e = 0 on SN ,

(DGΨ)N⊗N = 0 on ∂ΩR.

(5.7)

Compared with (3.38)-(3.39), a key difference of the above boundary value problem for magneto-
electro-elastic materials lies in that the Piola-Maxwell stress Σ̃MW shall now include the magnetic
contribution and is given by

Σ̃MW = E⊗ D̃ + H⊗ B̃− J(
ε0
2
|E|2 +

µ0

2
|H|2)F−T ,

where

H = −gradζ ◦ χ, B̃ = µ0[JF−1H + F−1(M̃ + M̃e].

We remark that the above boundary value problem (5.6)-(5.7) for electric potential, magnetic
potential, deformation, polarization and magnetization may be solved to determine any physical
quantities of interest. (11 equations in (5.6) for 11 unknowns: ξ, ζ, χ, P̃, M̃.) The constitutive
relations are prescribed by the internal energy density function Ψ. For many materials of interest,
it may be sufficient to use some simple internal energy which will be discussed below. For brevi-
ty, below we only consider nongradient theories with the internal energy density independent of
gradients of strain, polarization and magnetization.

5.2 Nonlinear magnetic elastomers

The magnetic field (H-field) of most applications reaches up to the order of 106A/m, i.e., the
magnetic flux (B-field) is at the order of 1Tesla. Therefore, the Maxwell stress contributed by
magnetic fields can reach roughly the order of 106Pa (1% strain for materials of Young’s modulus of
0.1Gpa), which is as large as the Maxwell stress contributed by electric fields (cf., § 4.1). Moreover,
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since there exists no magnetic monopole, magnetization in materials is more stable than polarization
and may be more favorable for some applications. From the theoretical viewpoint the model for
magnetic elastomers is exactly parallel to that for dielectric elastomer discussed in § 4.1. To
establish the boundary value problem for magnetic elastomers, we start by postulating the internal
energy density function depends only on the deformation gradient F and magnetization M̃ and is
given by

Ψ = Ψ(F, M̃) = Welast(U) +
µ0

2J
(RTM̃) ·Amag(RTM̃),

where we have assumed that the magnetic permeability tensor µ ∈ R3×3
sym is independent of defor-

mation gradient and the tensor Amag = (µ/µ0 − I)−1. Upon neglecting all electric effects, then in
the current configuration equations (5.6) can be rewritten as (cf., (4.5)){

divb = 0, b = µ0[−(I + R(Amag)−1RTχΩ)gradζ + m + me] in R3,

−div(σmech + σ′MW) = f e, σmech = [ 1
JDFWelast(U)FT ] ◦ π in Ω,

(5.8)

where the modified Maxwell stress in current configuration is given by

σ′MW = h⊗ b− b · h
2

I, h = −gradζ. (5.9)

For small strains, upon linearization the boundary value problem can be formulated as (cf.,
(4.7)) {

div[−(I + (Amag)−1χΩ)∇ζ + Me] = 0 in R3,

−div(C∇u + σ′MW) = f e in Ω,
(5.10)

with mechanical boundary conditions (4.9) and magnetic boundary condition (5.1)2.

5.3 Magneto-electric materials

For the potential applications in wireless energy transfer, spintronics, and multiple-sate memory bits
among others (Velev et al., 2011; Scott, 2007; Pyatakov and Zvezdin 2012), the magnetoelectric
effects has recently attracted a lot of interest. For direct coupling between magnetization and
polarization, we may model it by postulating the internal energy density function is given by

Ψ(F, P̃, M̃) = Welast(U) + Cme(P̃, M̃) +
1

2J
(RT P̃) ·A(RT P̃) +

µ0

2J
(RTM̃) ·Amag(RTM̃),

where Cme(P̃, M̃) reflects the coupling between polarization and magnetization. For small strains,
upon expansion and truncation we can rewrite the internal energy function as (recall that S = F−I):

Ψ(F,P,M) =
1

2
S ·CS + P ·BmeM +

1

2
P ·AP +

µ0

2
M ·AmagM, (5.11)

where Bme ∈ R3×3
sym is the coupling tensor between P and M. If the material is isotropic, by (3.7) we

infer that the tensor Bme can be written as Bme = bmeI. At the absence of external polarization,
magnetization, traction, body force, electric and magnetic fields, it is natural to assume that the
trivial state (F,P,M) = (I, 0, 0) is the equilibrium state such that the total free energy is minimized.
Therefore, the constant bme shall satisfy that (recall that A = 1

ε0(ε̂r−1)I and Amag = 1
µ̂r−1I)

b2me <
µ0

ε0(ε̂r − 1)(µ̂r − 1)
,
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where ε̂r, µ̂r are the relative electric permittivity and magnetic permeability of the material, respec-
tively. The above upper bound on the direct magnetization and polarization coupling coefficient is
equivalent to the bound derived by Brown et al. (1968).5 Finally, by (5.6), (5.7) and (5.11), the
linearized boundary value problem for magneto-electric materials can be written as

∇ξ + AP + BmeM = 0, in Ω,

µ0∇ζ + BmeP + µ0A
magM = 0 in Ω,

div[−ε0∇ξ + P + Pe] = ρe in V,

div[−∇ζ + M + Me] = 0 in R3,

−div(C∇u + σ′MW) = f e in Ω,

(5.12)

with electrical boundary conditions (4.8), mechanical boundary conditions (4.9) and magnetic
boundary condition (5.1)2. In the above equations, we have neglected the differences between
the reference and current configurations and the (modified) Maxwell stress is now given by (cf.,
(4.4) and (5.9))

σ′MW = h⊗ b + e⊗ d− b · h + d · e
2

I. (5.13)

5.4 Piezo-magneto-electric materials

By Piezo-magneto-electric effects, we refer to materials that have couplings between strain and
polarization as well as magnetization. For small strain, upon expansion and truncation we can
write the internal energy density as (recall that S = F− I)

Ψ(F,P,M) =
1

2
S ·CS + P ·BS + M ·BpzmS + P ·BmeM +

1

2
P ·AP +

µ0

2
M ·AmagM,(5.14)

Then by (5.6), (5.7) and (5.11), the linearized boundary value problem for piezo-magneto-electric
materials can be written as

∇ξ + B∇u + AP + BmeP = 0, in Ω,

µ0∇ζ + Bpzm∇u + BmeP + µ0A
magM = 0 in Ω,

div[−ε0∇ξ + P + Pe] = ρe in V,

div[−∇ζ + M + Me] = 0 in R3,

−div[C∇u + BTP + (Bpzm)M + σ′MW] = f e in Ω,

(5.15)

with electrical boundary conditions (4.8), mechanical boundary conditions (4.9)1, magnetic bound-
ary condition (5.1)2 and

[C∇u + BTP + (Bpzm)M]n− [[σ′MW]]n− te = 0 on SN . (5.16)

Also, the (modified) Maxwell stress is given by (5.13).

6 Applications

6.1 Stretching of a soft ellipsoid in an external electric field

Consider a soft axis-symmetric ellipsoid ΩR with semi-axis lengths a0, b0 and of relative permittiv-
ity ε̂r in a uniform external electric field as shown in Fig. 3. The ambient medium is assumed to be

5The coupling coefficient α defined in Brown et al. (1968) is given by α = ε0(µ̂r − 1)(ε̂r − 1)bme in SI units.
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Figure 3: Deformation of a soft ellipsoid in an external electric field.

air or vacuum with permittivity ε0; the body ΩR consists of dielectric elastomer described by the
Neo-Hookean hyperelastic model with Welast(λ) given by (µ - shear modulus, κ - bulk modulus)

Welast(U) =
µ

2

[
J−2/3(λ2

1 + λ2
2 + λ2

3)− 3
]

+
κ

2
(J − 1)2, (6.1)

where (λ1, λ2, λ3) are the eigenvalues of the strain tensor U. We remark that the following solution
procedure can be applied to more general nonlinear elastic models or models that include surface
energy.

The application of an external electric field will deform the ellipsoid due to the Maxwell stress.
The Maxwell stress of a homogeneous ellipsoid has been explicitly calculated in Toupin (1956, §12).
From Toupin’s expression (1956, Eq. 12.30) we see that the Maxwell stress can be regarded as
a nonuniform outward normal traction and that the ellipsoid cannot remain as an ellipsoid after
deformation. Nevertheless, by symmetry we see that the deformed shape shall be axis-symmetric
with some aspect ratio a/b and volume |Ω|. To calculate the aspect ratio and volume that are easy
to measure in experiments, for simplicity we may a priori assume the deformation is homogeneous
(i.e., Gradχ is constant on ΩR) and hence the deformed shape remains as an axis-symmetric ellipsoid
with semi-axis lengths a, b. In other words, what we will predict is the “best-fitting” ellipsoid of
the actual shape of the deformed body.

By (3.9), the total free energy of the body can be written as

F [a, b, P̃] =

∫
ΩR

[
Welast(U) +

|P̃|2

2J(ε− ε0)

]
+
ε0
2

∫
V
|gradξ|2 +

∫
∂V
ξbd · n, (6.2)

where in the current configuration the electric field −gradξ satisfies (p = P̃/J){
divd = 0, d = −ε0gradξ + pχΩ in V,

ξ = ξb = −Ee · x on ∂V,

where Ee ∈ R3 is an uniform external electric field and assumed to be along x-direction, and
χΩ, equal to one on Ω and zero otherwise, is the characteristic function of domain Ω. By the
calculations in Liu (2013, Eq. 2.14-2.17), within a constant independent of a, b, P̃, the free energy
can be rewritten as

F [a, b, P̃] =

∫
ΩR

[
Welast(U) +

|P̃|2

2J(ε− ε0)
−Ee · P̃

]
+
ε0
2

∫
V
|gradξself |2, (6.3)
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Figure 4: The stretching λ1 in x-direction of a sphere in an external electric field.

where −gradξself is the “self-field” arising from the polarized body Ω:{
div(−ε0gradξself + pχΩ) = 0 in V,

ξself = 0 on ∂V.

If the body Ω is much smaller than V and far away from the boundary ∂V , we can replace V by
R3 and the solution of this problem for a uniform polarization p ∈ R3 is given by

gradξself(x) =
1

ε0
Qp ∀ x ∈ Ω,

where the symmetric positive matrix Q, depending only on the aspect ratio, is called the depolar-
ization matrix and given by

Q =

∫
−
S2

k̂⊗ k̂dk̂

(ak̂2
1 + 2bk̂2

2)1/2
= diag[I1, I2, I3],

I2 = I3 =
ab2

2

∫ +∞

0

du

(b2 + u)2
√

(a2 + u)
, I1 = 1− 2I2.

In this case, by the divergence theorem we have

ε0
2

∫
V
|gradξself |2 =

1

2

∫
V

gradξself · pχΩ = |Ω| 1

2ε0
p ·Qp.

We now consider the problem of minimizing the free energy (6.3) over all possible a, b, P̃. First,
it can be shown that the minimizing polarization P̃ has to be uniform on the body ΩR, i.e., the
polarization p has to be uniform on Ω (Desimone and James, 2002; Liu et al., 2006). Therefore,
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the free energy (6.3) can be rewritten as

F [a, b, P̃]

πa0b20
=
µ

2

[
J−2/3((

a

a0
)2 + 2(

b

b0
)2 − 3)

]
+
κ

2
(J − 1)2

+
|P̃|2

2J(ε− ε0)
−Ee · P̃ +

1

2ε0J
P̃ ·QP̃.

The equilibrium or “best-fitting” ellipsoid and polarization are determined by

∂F [a, b, P̃]

∂a
= 0,

∂F [a, b, P̃]

∂b
= 0,

∂F [a, b, P̃]

∂P̃
= 0. (6.4)

The above set of algebraic equations can be explicitly solved; the general solutions and their phys-
ical implications will not be discussed here. Below we consider the special case of incompressible
materials with J ≡ 1. Then by symmetry and the last of (6.4) we have

λ2 =
b

b0
= λ

−1/2
1 = (

a

a0
)−1/2, P̃ = (

I

ε− ε0
+

Q

ε0
)−1Ee =

ε̂r − 1

1 + I1(ε̂r − 1)
ε0|Ee|2ex,

and hence

2F [a, b, P̃]

πµa0b20
= λ2

1 +
2

λ1
− 3− ε̂r − 1

1 + I1(ε̂r − 1)

ε0|Ee|2

µ
. (6.5)

For given Ee and ε̂r, the equilibrium stretching λ1 can be easily calculated by minimizing the
free energy (6.5) over λ1. The results are shown in Fig. 4 for a spherical ΩR. From Fig. 4 we observe
that the Maxwell stress stretches the sphere and the stretching λ1 depends linearly on |Ee|2 for
small |Ee| whereas significant nonlinearity emerges when ε̂r is large or |Ee| is large.

Figure 5: Magnetoelectric effects arising from the Maxwell stress and nonlinear elasticity of finite
deformation.

6.2 Magnetoelectric effects of magneto-electric elastomers

A generic boundary value problem concerning magneto-electro-elastic bodies are not amenable to
explicit solution. In analogy with the classic theories for lower dimensional bodies in elasticity, we
now develop a one-dimensional theory for magneto-electro-elastic films as shown in Fig. 5. Based
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on the geometric and loading features, we a priori assume that the deformation is of the following
form:

x = X + u(X), y = Y (1 + α(X)), z = Z(1 + β(X)), (6.6)

where X = (X,Y, Z) are the Lagrange coordinates, x = (x, y, z) are the Euler coordinates and
u, α, β : (0, L) → R are scalar functions describing the deformed state of the body. Further, we
assume that there are external charges ρ̃e(X), external electric dipoles P̃ e(X) (along X-direction),
and external magnetization M̃e(X) distributed on the film. The conducting electrodes maintain
constant electrostatic potentials on both the top and bottom faces but are assumed to be mechan-
ically trivial. In addition, there is a constant external magnetic field he ∈ R3 applied on the film.
We are interested in the magneto-electro-elastic state of the film.

Compared with the analogous theory in elasticity, we point out that the body is a thin film
(the thickness L is much smaller than the width L1 in the other two directions) instead of being a
slender body (St. Venant problems) since it is desirable to neglect the electric field in the ambient
medium (i.e., the fringe fields). Further, it is reasonable to assume that the intrinsic polarization
and magnetization are independent of in-plane positions Y,Z:

P̃ = P̃ (X)eX , M̃ = M̃(X). (6.7)

It is clear that the response of the film depends on the form of internal energy density function
Ψ, i.e., the constitutive relations. The most general nonlinear, strain/polarization/magnetization
gradient theory will not be explored here, though the problem is essentially one-dimensional for
the “kinematic” assumptions (6.6) and (6.7). Below we present a solution concerning nonlinear
magneto-electric elastomers with the internal energy density function given by

Ψ(F,P,M) = Welast(U) +
1

2ε0(ε̂r − 1)J
|P̃|2 +

µ0

2(µ̂r − 1)J
|M̃|2, (6.8)

where µ̂r (resp. ε̂r ) is the relative magnetic permeability (resp. electric permittivity) of the film.
We remark that there is no direct coupling between magnetization and polarization, i.e., the direct
magnetoelectric coupling tensor Bme = 0 in (5.11). Nevertheless, effective magnetoelectric coupling
arises from the Maxwell stress and geometric nonlinearity, as one will see shortly.

Without loss of generality assume that x(0) = 0, x(L) = l. For simplicity assume that the
external charges, polarization and magnetization ρ̃e = 0, P̃ e = 0 and M̃e = 0. It will be convenient
to write the electrostatic and magnetostatic problem in the current configuration whereas the
mechanical balance equations in the reference configuration. By (1.1), we infer the boundary value
problems for electric and magnetic fields are as follows:

(−ε0ξ,x + p),x = 0 on (0, l),

p = −(ε− ε0)ξ,x on (0, l),

ξ(0) = 0, ξ(l) = V


div[−gradζ + mχΩ] = 0 on R3,

m = −(µ̂r − 1)gradζ on Ω,

−gradζ → he as |x| → ∞.
(6.9)

For ease of exposition, we assume that the material is elastically isotropic–a reasonable assumption
for soft polymers and that the elastic properties are described by the compressible Neo-Hookean
hyperelastic model with Welast(U) given by (6.1). By symmetry we can conclude that λ2 = λ3 =
(J/λ1)1/2. For simplicity we assume that λ1, λ2 are independent of X. Then we immediately find
that the electric field −gradξ and polarization for x ∈ (0, l) are given by

− gradξ = −V
l

ex, p = −ε0(ε̂r − 1)
V

l
ex. (6.10)
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Also, if the external magnetic field is out-of-plane: he = hexex, the self magnetic field −gradζself :=
−gradζ − he and magnetization for x ∈ (0, l) are given by

− gradζself = −µr − 1

µr
hexex, m =

µr − 1

µr
hexex. (6.11)

whereas if the external magnetic field is in-plane: he = heyey, the self magnetic field −gradζself and
magnetization is given by

− gradζself = 0, m = (µr − 1)heyey. (6.12)

Note that by (3.1),

P̃ = pJ, M̃ = mJ. (6.13)

Therefore, by (5.3), (5.4), (3.10), (6.8) and (6.10) we find the total free energy as

F (λ1, J)

µLL2
1

= Ŵelast(λ1, J)− J

2λ2
1

f̂ elect − J

2
f̂mgf (6.14)

where the following dimensionless quantities are introduced for clarity:

Ŵelast(λ1, J) =
1

2

[
J−2/3(λ2

1 +
2J

λ1
)− 3

]
+
κ̂

2
(J − 1)2,

κ̂ =
κ

µ
, f̂ elect =

εrε0V
2

µL2
, f̂mgf =

µ0

µ

[µr − 1

µr
(hex)2 + (µr − 1)(hey)

2
]
.

Upon minimizing F (λ1, J) over (λ1, J) we obtain the necessary conditions ∂F
∂λ1

= ∂F
∂J = 0, i.e.,{

J−2/3λ1 − J1/3λ−2
1 + Jλ−3

1 f̂ elect = 0,

−1
3(J−5/3λ2

1 − J−2/3λ−1
1 ) + κ̂(J − 1)− 1

2λ
−2
1 f̂ elect − 1

2 f̂
mgf = 0.

(6.15)

From (6.15) we observe that the stretching λ1 and hence the polarization along ex-direction
p = −ε0(ε̂r−1)ξ,x = −ε0(ε̂r−1) V

Lλ1
depend on the magnitude and direction of the external magnetic

field he . From this viewpoint, the magnetoelectric coupling is effectively created from the Maxwell
stress and geometric nonlinearity. The change of polarization at the presence of external magnetic
field is appropriate for evaluating the strength of this magnetoelectric coupling which is given by

Mp = −ε0(ε̂r − 1)
V

L
(λ−1

1

∣∣∣
he 6=0

− λ−1
1

∣∣∣
he=0

). (6.16)

We can numerically solve (6.15) and determine the polarization Mp induced by the external
magnetic field; the dependence of Mp on |he|2 is shown in Fig. 6 for a fixed nominal electric field
Ẽ0 := V/L = 107 V/m (ε0|Ẽ0|2 = 885.4Pa). The material properties are chosen as ε̂r = 20, µ̂r = 5,
κ̂ = 10, µ = 1, 0.9, 0.8, 0.7, 0.6, 0.5 MPa. At the magnetic field of |he| = 106 A/m (i.e., the B-field is
1.26T in vacuum), the induced polarization is at the order of 100µC/m2 that may be compared with
the magnetoelectricity of crystal TbMnO3 that has induced polarization at the order of 200− 600
µC/m2 in a magnetic flux of 2−9T at a temperature below 30K (Kimura et al., 2003). From Fig. 6
we also observe that the induced polarization by the external magnetic field is roughly proportional
to |he|2 and the slope of the curves increases as the shear modulus µ or bulk modulus κ decrease.
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Figure 6: An elastic film in an electric and magnetic field.

To calculate the slope explicitly, we assume small strain Mλ := λ1 − 1 ∼ MJ := J − 1 ∼ η << 1,
and then expand and truncate the free energy (6.14) up to the order of η2 as

F (Mλ,MJ)

µLL2
1

=
1

2

[
3Mλ2 − 2MJMλ+

MJ2

3

]
+
κ̂

2
(MJ)2

−(MJ − 2Mλ− 2MλMJ + 3Mλ2)
1

2
f̂ elect − MJ

1

2
f̂mgf + o(η2). (6.17)

where an immaterial (λ1, J)-independent constant has been neglected. Then the necessary condi-
tions ∂F/∂Mλ = ∂F/∂MJ = 0 for the equilibrium (Mλ,MJ) imply{

3(1− f̂ elect)Mλ− (1− f̂ elect)MJ + f̂ elect = 0,

−(1− f̂ elect)Mλ+ (1
3 + κ̂)MJ − 1

2 f̂
elect − 1

2 f̂
mgf = 0.

(6.18)

Solving the above equations we obtain that MJ =
3
2
f̂mgf+ 1

2
f̂elect

3κ̂+f̂elect
and

Mλ =
f̂ elect(1

6 − κ̂−
1
2 f̂

elect) + 1
2 f̂

mgf(1− f̂ elect)

(1− f̂ elect)(3κ̂+ f̂ elect)
.

Therefore, the induced polarization defined by (6.16) is given by

Mp =
µf̂mgf

2( 3κ
ε0(ε̂r−1)Ẽ0

+ ε̂rẼ0
(ε̂r−1))

. (6.19)

From the above expression we see that there exists an optimal applied nominal field such that the
proportional constant between Mp and µf̂mgf is maximized:

(Mp)max =
(ε̂r − 1)

√
ε0

4
√

3ε̂rκ
µf̂mgf , Ẽopt0 =

√
3κ

ε0ε̂r
.
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As noticed earlier (Xu et al., 2010), soft elastomers may lose mechanical stability if the applied
electric field exceeds some critical value. Similar phenomenon occurs for elastomer and the crit-
ical electric field and external magnetization can be calculated by solving the algebraic equation
det(D2F (λ1, J)) = 0, where D2 represents the Hessian of F (λ1, J) in the regime of finite strain. In
the regime of small strain, by (6.17) we immediately see the stability condition is given by f̂ elect < 1.
This stability condition shall be satisfied in practical applications.

Figure 7: A flexoelectric plate under bending.

6.3 Bending of flexoelectric films

Flexoelectricity, unlike piezoelectricity, is not limited to crystalline solids and exist in all materi-
als including soft polymers and biological membranes. As a coupling between strain gradient and
polarization, a natural manifestation of flexoelectricity lie in the bending of a thin plate or mem-
brane. We have proposed a theory for flexoelectric membranes in Mohammadi et al. (2013) and
Liu and Sharma (2013). Below we formally derive this theory from the three dimensional theory
of flexoelectricity described in § 6.3.

Consider a thin-plate Ω = U × (−h
2 ,

h
2 ) as shown in Fig. 7, where U ⊂ R2 is a regular domain

occupied by the mid-plane of the plate in the reference configuration. For small strain, the internal
energy density function describing flexoelectricity is given by (4.28), i.e.,

U [u,P] =

∫
Ω

[ 1

2
∇u ·C∇u +

g

2
|∆u|2 + fP ·∆u +

1

2(ε− ε0)
|P|2

]
. (6.20)

Since h << 1, we anticipate the plate is prone to bend. As in the classic Kirchhoff-Love plate
theory, kinematically we postulate that (H1) the in-plane displacements depend linearly on x3 and
the out-of-plane displacement is independent of x3, (H2) the in-plane displacements of the mid-
plane vanish, i.e., the mid-plane is not stretched, (H3) the mid-plane undergoes an infinitesimal rigid
rotation, and (H4) the overall plate is nearly in the state of plane stress, i.e., σ13 ≈ σ23 ≈ σ33 ≈ 0.
By (H1) and (H2) we have

u1 = x3β1(x1, x2), u2 = x3β2(x1, x2), u3 = w(x1, x2), (6.21)

and hence on the mid-plane x3 = 0,

∇u =

 0 0 β1

0 0 β2

w,1 w,2 0

 ,

33



By (H3) we have

β1 = −w,1, β2 = −w,2.

Therefore, the in-plane strain is completely described by the out-of-plane displacement w on the
mid-plane and given by

(∇u)in-plane = −
[
x3w,11 x3w,12

x3w,21 x3w,22

]
= −x3∇∇w ∀ (x1, x2, x3) ∈ Ω× (−h

2
,
h

2
).

By (H4), the overall plate is in the state of plane stress and hence

(σ)pi = (L)piqj(∇u)qj (p, i, q, j = 1, 2), (6.22)

where L : R2×2
sym → R2×2

sym is the stiffness tensor for plane stress. Therefore, the elastic energy stored
in the plate is given by (p, i, q, j = 1, 2)

1

2

∫
U

∫ h
2

−h
2

(σ)pi(∇u)pi =
1

2

∫
U

(L′)piqjw,piw,qj , (L′)piqj =
h3

12
(L)piqj . (6.23)

In addition, by (6.21) we have

∆u ≈ [x3∆′β1, x3∆′β2,∆
′w] = [−x3(∆′w),1 , −x3(∆′w),2 , ∆′w],

where ∆′ = ∂2

∂x21
+ ∂2

∂x22
denotes the in-plane Laplacian. Further, since h << 1, we may introduce a

new kinematic assumption concerning the polarization P: (H5) the polarization depends only on
(x1, x2), i.e., P = P(x1, x2). Therefore, to the leading-order the rest of terms in (6.20) are given by∫

Ω

g

2
|∆u|2 =

∫ h
2

−h
2

∫
U

g

2
|∆u|2 =

∫
U

g′

2
(∆′w)2 +O(h3),

∫
Ω
fP ·∆u =

∫ h
2

−h
2

∫
U
fP ·∆u =

∫
U
f ′Pz∆

′w +O(h2), (6.24)

∫
Ω

a

2
|P|2 =

∫ h
2

−h
2

∫
U

a

2
|P|2 =

∫
U

a′

2
|P|2 +O(h2).

where g′ = hg, f ′ = hf , and a′ = ha. Keeping only the leading order terms in (6.20), by (6.23)
and (6.24) we can rewrite the internal energy of the plate as

U [w,P] ≈
∫
U

[g′
2

(∆′w)2 + f ′Pz∆
′w +

1

2
∇∇w · L′∇∇w +

a′

2
|P|2

]
,

which is precisely the internal energy used in Mohammadi et al. (2013) and Liu and Sharma (2013).

7 Summary and discussion

We have developed systematically an energy formulation for magneto-electro-elastic bodies based on
the principle of minimum free energy. In this framework, the free energy, state variables and possible
variations of state variables, and the Maxwell equations governing electrostatic and magnetostatic
fields are regarded as primitive notions or constraints while the concepts of stresses are regarded
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as derived quantities conjugate to deformation gradient. In this way, we untangle some of the
issues concerning the Maxwell stress. Also, the theoretical framework is particularly convenient for
complex materials with significant gradient effects, analysis of stability and fully coupled magneto-
electro-elastic materials.

As emphasized in Liu (2013), a set of field equations can enjoy infinitely many variational
formulations; neither the independent variables nor the functional has to be the same (Dorfmann
and Ogden, 2005; Bustamante et al., 2009a). In the Appendix C, we show how the nongradient
theory can be reformulated using the electric displacement or electric field (instead of polarization)
as the independent variables. Upon specifying the physical behaviors of the materials, we eventually
solve for local fields by the same boundary value problems that consist of the Maxwell equations
(1.1a)-(1.1b) and mechanical balance laws (1.1c). Nevertheless, different formulations may have
their respective pros and cons. It is undoubtedly useful to have a clear distinction and exploration
of the relationship between different formulations.

8 Appendix

A Higher order variational calculations

The variation of energy associated with strain gradient is given by (3.33) or (3.35). Below we
present the detailed derivation of (3.35). Recall that Λ̃pij (resp. up) denote the components of
DGΨ (resp. χ1). In index notation, integrating by parts we have∫

ΩR

Λ̃pijup,ij =

∫
∂ΩR

(Λ̃pijNj)up,i −
∫
∂ΩR

(Λ̃pij,jNi)up +

∫
ΩR

Λ̃pij,ijup. (A.1)

The tangential components of up,i and up, however, are not independent of each other on the surface
∂ΩR. We therefore rewrite the first integral on the right hand side as∫

∂ΩR

(Λ̃pijNj)up,kNkNi +

∫
∂ΩR

(Λ̃pijNj)up,k(δki −NkNi). (A.2)

Since ∂ΩR is a closed surface without boundary, for any differentiable tangential vector field v :
∂ΩR → R3 (i.e., v ·N = 0) we have∫

∂ΩR

divsv :=

∫
∂ΩR

vk,i(δik −NiNk) = 0. (A.3)

Let

vk = (Λ̃pijNj)(δki −NkNi)up.

It is clear that vkNk = 0. Therefore, by (A.3) and the product rule we have

0 =

∫
∂ΩR

[(Λ̃pmjNj)(δkm −NkNm)up],i(δik −NiNk)

=

∫
∂ΩR

τpup +

∫
∂ΩR

(Λ̃pmjNj)up,i(δim −NiNm). (A.4)

where the last integral on the right hand side of the above equation can be identified as the last
integral in (A.2), and

τp = [(Λ̃pmjNj)(δkm −NkNm)],i(δik −NiNk).

Inserting (A.2)-(A.4) into (A.1) we obtain (3.33).
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`````````````̀Mat. A, +
Mat. B, −

NG PG SG PGSG

NG NG/NG NG/PG NG/SG NG/PGSG
PG PG/PG PG/SG PG/PGSG
SG SG/SG SG/PGSG

PGSG PGSG/PGSG

Table 1: Interfacial conditions for an interface between materials described by different theories:
NG - nongradient, PG - polarization gradient, SG - strain gradient, PGSG - polarization and strain
gradient.

B Interfacial conditions

As illustrated in Fig. 8 we consider the interface Υ in the reference body ΩR and the two sides of Υ
consist of material A (Mat. A) and material B (Mat. B), respectively. Then the kinematic conti-
nuity conditions and the differential equations in (3.37) require the following interfacial conditions
on interfaces between different types of materials:

Figure 8: An interface between material A and material B.

NG/NG: [[χ]] = 0, [[(DFΨ) + Σ̃MW]]N = 0 on Υ;

NG/PG:

{
[[χ]] = 0, [[(DFΨ) + Σ̃MW]]N = 0 on Υ,

(DΠΨ)N = 0 on Υ−;

NG/SG:


[[χ]] = 0 on Υ,

[[(DFΨ) + Σ̃MW]]N + (DivDGΨ)N + τ = 0 on Υ−,
(DGΨ)N⊗N = 0 on Υ−;

NG/PGSG:


[[χ]] = 0 on Υ,

[[(DFΨ) + Σ̃MW]]N + (DivDGΨ)N + τ = 0 on Υ−,
(DΠΨ)N = 0, (DGΨ)N⊗N = 0 on Υ−;
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PG/PG:

{
[[χ]] = 0, [[P̃]] = 0 on Υ,

[[DΠΨ]]N = 0, [[(DFΨ) + Σ̃MW]]N = 0 on Υ;

PG/SG:


[[χ]] = 0, on Υ,

(DΠΨ)N = 0 on Υ+,

[[(DFΨ) + Σ̃MW]]N + (DivDGΨ)N + τ = 0 on Υ−,
(DGΨ)N⊗N = 0 on Υ−;

PG/PGSG:


[[χ]] = 0, [[DΠΨ]]N = 0 on Υ,

[[(DFΨ) + Σ̃MW]]N + (DivDGΨ)N + τ = 0 on Υ−,
(DGΨ)N⊗N = 0 on Υ−;

SG/SG:


[[χ]] = 0, [[Gradχ]] = 0 on Υ,

[[(DivDGΨ) + (DFΨ) + Σ̃MW]]N + [[τ ]] = 0 on Υ,

[[(DGΨ)N⊗N]] = 0 on Υ;

(B.5)

SG/PGSG:


[[χ]] = 0, [[Gradχ]] = 0 on Υ,

(DΠΨ)N = 0 on Υ−,
[[(DivDGΨ) + (DFΨ) + Σ̃MW]]N + [[τ ]] = 0 on Υ,

[[(DGΨ)N⊗N]] = 0 on Υ;

PGSG/PGSG:


[[χ]] = 0, [[Gradχ]] = 0, [[DΠΨ]]N = 0 on Υ,

[[(DivDGΨ) + (DFΨ) + Σ̃MW]]N + [[τ ]] = 0 on Υ,

[[(DGΨ)N⊗N]] = 0 on Υ.

C Alternative variational formulations of the nongradient theory

We can alternatively formulate the nongradient continuum theory for a magneto-electro-elastic
body by choosing different independent variables. For simplicity, below we restrict ourselves to
electro-elastic materials and remark that similar calculations apply to magneto-elastic or magneto-
electro-elastic materials. In addition, for simplicity we assume that there exists no external charges
and polarization, i.e., ρ̃e = P̃e = 0.

Formulation in terms of nominal electric displacement D̃

To use nominal electric displacement D̃ as the independent variable for electrostatics, we necessarily
assume that the electrostatic boundary condition is entirely of Neumann type:

N · D̃ = σ0 on ∂VR, (C.6)

whereas the mechanical loading conditions remain the same as (3.4). Then we postulate that the
total free energy of the system as a functional of (χ, D̃) is given by

F ′[χ, D̃] =

∫
VR

Φ(X; F, D̃)−
∫
SN

t̃e · χ−
∫

ΩR

f̃ e · χ,
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where Φ is the new stored energy density function of the system. Note that the system now
includes the ambient medium VR \ ΩR instead of being restricted to the body ΩR. We claim that
the equilibrium state is governed by the variational principle

min
(χ,D̃)

F ′[χ, D̃], (C.7)

where all admissible vector field D̃ shall satisfy the boundary condition (C.6) and

DivD̃ = 0 in VR. (C.8)

By the standard calculation of first variations, we find the associated Euler-Lagrange equations are
given by {

Curl(DD̃Φ) = 0 in VR,

DivDFΦ + f̃ e = 0 in VR.
(C.9)

The first of the above equation implies that there exists a scalar potential ξ : VR → R such that

DD̃Φ(F, D̃) = −Gradξ =: Ẽ in VR.

The above quantity is identified as the nominal electric field. Comparing the above equation with
(3.41), for the same material we shall have{

Ẽ = DD̃Φ(F, D̃) = FTDP̃Ψ(F, P̃),

DFΦ(F, D̃) = DFΨ(F, P̃) + Σ̃MW,
(C.10)

where, by (1.6), D̃ = ε0JC−1Ẽ + F−1P̃. Therefore, upon specifying the energy function Ψ(F, P̃)
for a material, we can solve for the energy function Φ(F, D̃) and vice versa if (i) the mapping
P̃ 7→ Ẽ = FTDP̃Ψ(F, P̃) is invertible (the inversion is denoted by P̃ = P̂(F, Ẽ)), and (ii) the

mapping Ẽ 7→ D̃ = ε0JC−1Ẽ + F−1P̂(F, Ẽ) is invertible. For example, the nonlinear isotropic
elastomer discussed in § 4.1 has the energy function Ψ(F, P̃) given by (cf., (4.3))

Ψ(F, P̃) = Welast(U) +
|P̃|2

2(ε− ε0)J
, (C.11)

where ε is the deformation-independent permittivity of the elastomer. Then by straightforward
calculation we can rewrite equation (C.10) as{

DD̃Φ(F, D̃) = 1
εJCD̃,

DFΦ(F, D̃) = DFWelast(U) +DF[ 1
2εJ D̃ ·CD̃],

(C.12)

Therefore, the energy function Φ(F, D̃) of the elastomer, within an immaterial constant, is neces-
sarily given by

Φ(F, D̃) = Welast(U) +
1

2εJ
D̃ ·CD̃.

Indeed, the above energy function Φ(χ, D̃) has been formulated and used by, e.g., Suo et al. (2008)
and Li and Landis (2012).
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Formulation in terms of nominal electric field Ẽ

We can also use (F, Ẽ) as the independent variables to formulate the theory. By the Maxwell
equation (1.6) we rewrite Ẽ = −Gradξ for a scalar potential. We define an energy functional as

F ′′[χ, ξ] =

∫
VR

W (X; F, Ẽ)−
∫

ΓR

[
1

2
kξ2 − ξ(kξb + σ0)]−

∫
SN

t̃e · χ−
∫

ΩR

f̃ e · χ

and claim that the equilibrium state is determined by the variational principle

min
χ

max
ξ
F ′′[χ, ξ], (C.13)

where the admissible potential ξ satisfies ξ = ξb on ΓD. By the standard calculation of first
variations, we find the associated Euler-Lagrange equations are given by{

Div(DẼW ) = 0 in VR,

DivDFW + f̃ e = 0 in VR.
(C.14)

Comparing the above equation with (3.41), for the same material we shall have{
D̃ = −DẼW (F, Ẽ) = F−1(ε0JF−T Ẽ + P̃), Ẽ = FTDP̃Ψ(F, P̃),

DFW (F, Ẽ) = DFΨ(F, P̃) + Σ̃MW.
(C.15)

Therefore, if the energy function Ψ(F, P̃) is specified, we may solve for the energy function W (F, Ẽ)
and vice versa if the mapping P̃ 7→ Ẽ = FTDP̃Ψ(F, P̃) is invertible. As an example, we consider

the isotropic nonlinear elastomer with the energy function Ψ(F, P̃) given by (C.11). Then by
straightforward calculation we can rewrite equation (C.15) as{

DẼW (F, Ẽ) = −εJC−1Ẽ,

DFW (F, Ẽ) = DFWelast(U) +DF[− εJ
2 Ẽ ·C−1Ẽ],

(C.16)

Therefore, the energy function W (F, Ẽ) of the elastomer, within an immaterial constant, shall be
given by

W (F, Ẽ) = Welast(U)− εJ

2
Ẽ ·C−1Ẽ.

A few remarks are in order here regarding the alternative variational formulations. First,
formulations in terms of D̃ and Ẽ have to include the ambient medium VR \ ΩR as part of the
system; the total energy is a local functional of the independent variables. Therefore, an important
advantage of the formulations with D̃ or Ẽ being the independent variables for electrostatics lies
in the Euler-Lagrange equations (C.9) and (C.14) are exceptionally simple and easy to derive. In
addition, the formulation in terms of Ẽ (i.e., the scalar potential ξ) implies a natural and simple
numerical methods for solving the associated boundary value problems (Yang and Dayal 2011;
Li and Landis, 2012). However, the trade-off is that (i) the variational principle (C.7) cannot
address Dirichlet-type and Robin-type boundary conditions, and the independent variable D̃ is
a priori required to satisfy a differential constraint (C.8), (ii) the variational principle (C.13) is
a min-max problem and doesn’t admit a clear thermodynamic interpretation, (iii) if the ambient
medium is vacuum, it is somewhat ungrounded to interpret D̃ or Ẽ as the state of vacuum that
tends to minimize or maximize the free energy of the system in a thermodynamic process until the
equilibrium, and (iv) it is more natural to use P̃ instead of D̃ or Ẽ for gradient theories.
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