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Notation

ξt, ξ, ξe Total, self, external electrostatic potentials
Et, E, Ee Total, self, external electric fields
Dt, D, De Total, self, external electric displacements
Pt, P, Pe Total, self (state variable), external polarizations
ρt, ρ, ρe Total, self (state variable), external charge densities
εc, ε0 Permittivity of “comparison” medium and vacuum. εc = ε0 up to § 5
V A connected open regular domain containing the ambient medium and system
Ω An open (maybe disconnected) domain containing the system of interest.

Ω = V if εc is different from the ambient permittivity
ΓD, (ΓR) Subset of ∂V on which Dirichlet (Robin) BC is applied
k, ξb, σ0 Functions to prescribe electrostatic boundary conditions, cf., (2.3)-(2.4)

F̃ , F Free energy functionals, different by a (ρ,P)-independent constant
U , P Internal energy functional and potential energy functional
Φ Internal energy density function



On energy formulations of electrostatics for continuum media

Liping Liu
Department of Mathematics, Rutgers University, NJ 08854

Department of Mechanical Aerospace Engineering, Rutgers University, NJ 08854

Draft: May 2012

Article in press at JMPS, http://dx.doi.org/10.1016/j.jmps.2012.12.007.

Abstract

In this paper we present a unified energy formulation of electrostatics for continuum media includ-
ing conductors, dielectrics, ferroelectrics, etc. The effects of boundary devices, external charges
and polarizations are taken into account in formulating the free energy. We further explore the re-
lations between various energy formulations including Landau-Ginzburg-Devonshire’s formulation,
Toupin’s formulation, Ericksen’s formulation, formulations with respect to a change of comparison
or background medium, a formulation without introducing the quantity of polarization, and the
Hashin-Shtrikman variational principle. Finally, we apply the formulation to calculate forces on a
charge and a dipole immersed in a smooth polarization (field) and in the proximity of boundary,
and to estimate the effective properties of nonlinear dielectric composites. We expect that this for-
mulation and clarification will provide a solid ground for addressing electro-elastics of deformable
bodies.

1 Introduction

Consider a continuum body in electrostatics. If the material property of this body is specified, aside
from possible metastable states there should be no ambiguity in how this body would respond to
mutual interactions and external fields; the state of this body and the electric field in space satisfy
a system of field equations, i.e., the Maxwell equations:

∇×Et = 0, ∇ ·Dt = ρt, (1.1a)

Dt = ε0E
t + Pt, C(x; Dt,Et,Pt, ρt) = 0 (1.1b)

on V , where V ⊂ IR3 is an open connected domain, Et, Dt, Pt : V → IR3 are respectively the
(total) electric field, electric displacement, polarization, ρt : V → IR is the (total) charge density,
and C(x; Dt,Et,Pt, ρt) = 0 represents the constitutive relations of the medium such that the system
of (1.1) is well-posed upon specifying suitable boundary conditions on ∂V . From this viewpoint,
alternative formulations of electrostatics might appear to be unnecessary or less fundamental for
electrostatic analysis.

Nevertheless, an energy formulation has proven to be advantageous in addressing a number of
difficulties in the Maxwell field formulation (1.1). First, the constitutive relations, describing the
medium properties, cannot be derived within the framework of continuum theory but has to be
inferred from benchmark experiments or a more fundamental microscopic theory. Moreover, the
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constitutive relations must conform to the fundamental laws of thermodynamics, frame indifference
and underlying symmetries of the medium. An energy formulation, as evident in the classic theory
of nonlinear elasticity, has the unique advantage in restricting physically realistic constitutive laws
by the fundamental laws of of thermodynamics, frame indifference and material symmetries (Gurtin
et al., 2010; Dorfmann and Ogden, 2005; Suo et al., 2008). Also, a boundary value problem of (1.1)
with a general constitutive law may admit multiple solutions. To analyze the stability/metastability
of these solutions, it is in general more convenient to have an energy formulation and conduct
the usual stability test (Ericksen, 1991; Dorfmann and Ogden, 2010; Bertoldi and Gei 2011).
Moreover, when coupled with deformations and mechanical loadings a well-known difficulty, though
not insurmountable, is to introduce the notion of stress, since there are two origins of forces: the
local, short-range contact force giving rise to the usual concept of Cauchy stress (Truesdell and
Noll, 2003; Gurtin, 1981), and the nonlocal, long-range, electrostatic force giving rise to the notion
of Maxwell stress (Toupin, 1956; 1960; Jackson, 1999, p. 261; Truesdell and Toupin, 1960, §542-544;
Melcher, 1981, ch. 3; Bustamante et al., 2009; Steigmann 2009). Therefore, the usual free-body-
diagram analysis cannot be cleanly carried out 1, not to mention the difficulty in formulating self-
consistent realistic constitutive relations of stress, strain, electric field and electric displacement.
Finally, in the study of phase transitions and many other physical phenomena for which the body
has additional degrees of freedom (or internal variables), e.g., a moving phase boundary or crack tip,
an energy formulation is indispensable for calculating the conjugate driving forces and formulating
the kinetic laws (Abeyaratne and Knowles, 2001; Attard, 2003; Chen, 2009).

We are therefore motivated to study energy formulations of electrostatics for continuum bodies.
At the presence of boundary devices, we consider a domain V ⊂ IR3 containing the continuum
body Ω and ambient medium of permittivity εc

2. For clarity and simplicity, we set a modest goal
and assume idealizations: (i) the continuum body and ambient medium is maintained at constant
temperature, has constant entropy, do not dissipate energy and all processes are reversible, and
(ii) the continuum body does not deform 3. For dissipative and/or deformable media, the reader is
referred to Shu and Bhattacharya (2001) for deformable ferroelectric crystals, to Fosdick and Tang
(2007) for a general continuum framework of electrodynamics and thermomechanics of deformable
bodies, to McMeeking and Landis (2005), Suo et al. (2008) for deformable dielectrics with or
without introducing polarization, Xiao and Bhattacharya (2008) for dissipative semiconducting
ferroelectrics, to Bustamante et al. (2009) for a variational framework of electro-elastics, to Miehe
et al. (2011) for dissipative electro-magneto-elastic composites, and to reviews of Damjanovic
(1998) for detailed descriptions of many materials of interest.

Our main interest here is to identify the stable/metastable equilibrium states or in another
word, how the continuum bodies interact with each other, how they respond to external sources
and boundary devices, and how to analyze the stability of a stationary state. Assuming the above
idealizations, we establish a unified framework for addressing various media including conductors,
dielectric and ferroelectric media, and the orbital-free model of density functional theory. We al-
so take into account the effects of general boundary conditions (including Dirichlet’s, Neumann’s
and Robin’s boundary conditions) on the free energy which were rarely considered in previous
treatments. The proposed unified treatment is particularly convenient for addressing interactions

1For example, it is unclear how to prove the Cauchy theorem from the Cauchy hypothesis (Gurtin, 1981), i.e., the
very existence of Cauchy stress is not obvious if one starts from Cauchy hypothesis.

2For the moment, one may think of the ambient medium as vacuum: εc = ε0 = 8.854 × 10−12F/m. However,
as far as predicting the stationary electric field, electric displacement and energy, the ambient medium may be any
other medium, see discussions in §5.

3Elasticity alone is typically not a source of ambiguity. Coupling with elasticity may be included by letting the
internal energy density Φ depend on deformation gradient, cf., (2.10), once issues with electrostatics are clarified.
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between bodies of different media, e.g., a conductor and a dielectric/ferroelectric body, and for ad-
dressing some unique features of electrostatics, e.g., the existence of mobile charges and conductors
(singular in terms of static permittivity) and varieties of laboratory available boundary devices,
e.g., capacitors and batteries.

However, as a confusing matter of fact, there are quite a few different energy formulations of
continuum electrostatics, particularly when deformations are under consideration as well (Toupin
1956; Eringen 1963; Brown, 1966; Ericksen, 2007). We now understand that the varieties or
controversies arise from the freedom in choosing formal state variables, separation of internal energy
and total field energy (in the sense defined in § 2.1), and material or spatial descriptions. All of
them are undoubtedly consistent with the Maxwell field equations (1.1) and hence equivalent to the
extent of determining the fields, but not all of them are physically based in the sense that (i) the
variational principle (i.e., minimization or maximization of the energy functional) has no clear and
direct thermodynamic interpretation, and (ii) the choices and variations of “state variables” are
formal rather than physical. For example, in Toupin’s formulation (cf., § 4.2) the physical meaning
of the energy functional is not at all clear, aside from the associated Euler-Lagrange’s equations
are consistent with the Maxwell’s equations (1.1). Also, the electrostatic potential is one of the
state variables and may vary within some admissible space. If the ambient medium is vacuum, it is
rather puzzling why the electrostatic potential in vacuum should be relevant to the thermodynamic
state of the system and why it could respond to external stimuli so as to reach the equilibrium state
of vacuum (if there is such a kind in the classic electrostatics).

In regard of these alternative variational formulations, we show in details how the current
formulation, formulations of Landau-Ginzburg-Devonshire (Landau 1937; Ginzburg and Landau,
1950; Devonshire, 1951; 1954; Cao, 2008), Toupin (1956) and Ericksen (2007) are related with
each other and the Maxwell field equations (1.1). Moreover, it is fairly common that electronic
devices work in an ambient medium other than vacuum or air. We are therefore motivated to show a
symmetry of the total free energy with respect to the permittivity of the ambient medium, clarifying
the impact of ambient medium on some of the fundamental concepts such as polarization, force,
stress, etc. We also show a variational formulation without introducing polarization and explain
how it is related with the current formulation and the Hashin-Shtrikman variational principles
(which has been widely used for bounding effective properties of composites).

In addition, we remark that the proposed energy functional and minimization principle are
known and anticipated from thermodynamics, see e.g., Eringen (1963) and Fosdick and Tang (2007),
from which ours is different in the form of boundary terms or total field energy. An important
purpose here is to sort out mutual relations between various formulations (which motivates us to
neglect deformation at this stage), clarifying or justifying (i) the free energy contribution from
boundary devices, (ii) the equivalence of various forms of energy associated with external sources,
(iii) interactions between conductors and polarizable bodies, and (iv) the equivalence of various
forms of total field energy. A particular point we would like to emphasize is that a boundary value
problem in the form of partial differential equations like (1.1) may enjoy infinitely many different
variational formulations; neither the energy functional nor the state variable has to be the same.
These variational formulations are equivalent to the extent of determining the relevant fields. If the
system, however, has some additional degrees of freedom described by an internal variable and our
interest is on, e.g., the dynamics of the internal variable or the stability of the system, the physical
free energy and principle of minimum free energy have to be identified among these “equivalent”
variational formulations, and one has to decide on which of the energy functionals is the physical
free energy and what are the “possible variations” (Ericksen, 1991, p. 7). It is clear that the
judgement cannot be made on a mathematical ground; the choice depends on the physical context
instead of mathematical form, see detailed discussions and examples in § 6.
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As for practical applications, we calculate the explicit formula of minimum free energies for a
collection of conductors (cf., (3.41)), for a linear dielectric body (cf., (3.50)), and the effective free
energy of a polarizable body interacting with a conductor (cf., (3.65)-(3.66)). These results may
serve as the starting points for next level of modelings, e.g., the dynamics, evolution, and statistics
of electromagnetic media. In § 6 we recognize the proposed energy functional is closely related with
the Hashin-Shtrikman variational principle and generalize an identity (cf., 6.9) between the Hashin-
Shtrikman variational principle and classic variational principle for general internal energy density
function, boundary conditions and external sources (Milton, 2002, §13.6). By this identity we derive
bounds on the effective property of a nonlinear dielectric composite in § 7.3 and anticipate broader
applications in the multiscale modeling and analysis of heterogeneous media. The derived force
formula in § 7.2 on a point charge or a point dipole immersed in a smooth distribution of charges
and polarization is also expected to be useful for modeling field-controlled self-assembly (Sun et
al., 2000), separation and concentration (Pankhurst et al., 2003), electric or magnetic suspensions
(Odenbach, 2002), electric or magnetic tweezers (Grier, 2003), etc.

The paper is organized as follows. In §2 we formulate the free energy and principle of minimum
free energy. In §3 by the energy formulation we recover classic theories of typical media including
linear and nonlinear dielectrics, conductors, ferroelectric media, their interactions, and the orbital-
free model in the density function theory. In § 4 we select a few variational principles and show
their consistence. In § 5 we show a symmetry of total free energy with respect to changes of
comparison background media. In § 6 we present the classic variational formulation in terms
electrostatic potential, show how it is related with our free energy formulation, and prove a relation
between two energies which may be regarded as a generalization of the classic relation permitting
the Hashin-Shtrikman’s estimates. In § 7 we present a few applications.
Notation. We will use direct notion in this paper; ∇ is reserved for spatial gradient whereas D
is used for differentiating with respect to other variables. Domains are assumed to be open with
smooth boundaries. The main trust of this work comes from the need of a consistent theory for
modeling electro-elastic materials instead of mathematical analysis. Therefore, the rigor is com-
prised to some extent that we do not normally state conditions of integrability and differentiability
since it is of little interest to applied scientists.

2 Free energy of a continuum body in electrostatics

2.1 Terminologies

Since the literature has no universal agreement on the terminologies such as system, free energy,
internal energy, etc, for clarity we define these terminologies below.

1. System and ambient medium. Let V ⊂ IR3 be a connected open domain containing a finite
continuum body Ω (open but may be disconnected) and ambient medium of permittivity εc
on V \Ω. The domain V may be unbounded, but the boundary ∂V is assumed to be bounded.
We refer to the continuum body Ω as the system. The state of the continuum body is either
described by a distributed charge density ρ : Ω→ IR or a distributed polarization P : Ω→ IR3

or both 4. For ease of notation, below we extend by zero (ρ,P) to the entire domain V , i.e.,

4At the atomistic scale, charge density ρ and polarization P in a body are not independently assignable and in
particular, the definition of polarization P hinges on the concept of Berry phase in quantum mechanics and is nonlocal
(Resta, 1994; King-Smith and Vanderbilt, 1994). Here, we, however, follow the classic viewpoint of polarization and
envisage microscopic polarization is associated with individual atoms or molecules in the body and macroscopic
polarization is a spatial average of the microscopic one, though this viewpoint clearly does not make much sense for
ionic solids.
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Figure 1: The system, ambient medium and boundary devices: (a) the system Ω with an
internal energy density function Φ = Φ(ρ,P,∇ρ,∇P), the linear ambient medium V \ Ω
with permittivity εc and the extended (or combined) system V ; (b) the boundary device (a
capacitor) applied on an infinitesimal boundary dA ⊂ ∂V .

(ρ,P) = (ρ,P)χΩ and χΩ is the characteristic function of Ω. Further, properties of media
place some constraint on admissible states of the system which is represented by

(ρ,P) ∈ S, (2.1)

where S denotes the collection of all admissible states for the system and will be specified
below for typical media.

In the above definition, we have tacitly assumed that the polarization in a medium satisfies
P = Dt − εcEt, and henceforth the ambient medium is “unpolarizable”. We remark that, as
will be shown in §5, one may choose a different “comparison” medium of permittivity ε′c to
define polarization. In this case, the system shall include the ambient medium of permittivity
εc since it is now “polarizable”. For this reason, we sometimes refer to the collection of the
body and ambient medium, i.e., V , as the extended system.

2. External sources. By external sources we refer to a fixed distribution of charge density
ρe : Ω0 → IR and polarization Pe : Ω0 → IR3, where Ω0 ⊂ V is open and bounded, and
Ω0 ∩ Ω = ∅ 5. For ease of notation, below we extend (ρe,Pe) by zero to V .

3. Total sources. The sum of (ρ,P) of the system and the external sources (ρe,Pe) are referred
to as the total sources:

(ρt,Pt) = (ρ,P) + (ρe,Pe). (2.2)

According to the Maxwell equations (1.1), there exists an electrostatic potential ξt : V → IR
such that the total electric field Et = −∇ξt on V .

5Pre-existing charges and dipoles on the system Ω can be handled by choosing appropriate admissible space S
and internal energy density function Φ.
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4. Boundary condition and boundary device. Let ΓD ⊂ ∂V be a subboundary on which the
Dirichlet boundary condition

ξt − ξb = 0 on ΓD (2.3)

is applied whereas the Robin boundary condition

k(ξt − ξb)− n · [−εc∇ξt + P + Pe]− σ0 = 0 on ΓR (2.4)

is applied on ΓR := ∂V \ ΓD. Here k ≥ 0, ξb, σ0 : ∂V → IR are given functions and n is
the outward unit normal on ∂V . The physical devices used to maintain the above boundary
conditions (2.3)-(2.4) are referred to as the boundary devices. For an infinitesimal subsurface
dA ⊂ ∂V , the boundary condition (2.4) on dA can be realized by a capacitor of capacitance
kdA and initial charge (σ0 +kξb)dA as shown in Fig. 1(b), while the boundary condition (2.3)
on dA can be realized by the same capacitor in the limit of k → +∞. To see this, we consider
the infinitesimal capacitor illustrated in Fig. 1(b). Clearly we have

σu + σl = σ0 + kξb, σl = kξt, σu = −n ·Dt = −n · (−εc∇ξt + P + Pe),

which, upon eliminating σu, σl, implies (2.4). Additionally, the energy stored in this in-
finitesimal capacitor is the field energy between the capacitor and given by 1

2k(ξt)2dA, which
motivates our subsequent definition of potential energy associated with boundary devices, see
equation (2.11).

5. Total electric field. The total electric field Et = −∇ξt in space is clearly determined by the
Maxwell’s equations:

div[−εc∇ξt + P + Pe] = ρ+ ρe on V,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · [−εc∇ξt + P + Pe]− σ0 = 0 on ΓR.

(2.5)

From the classic theory of elliptic equations, we know that the above equation admits a unique
(or unique within a constant if k = 0 and ΓD = ∅) solution in

W = {ζ :

∫
V
|∇ζ|2 <∞, ζ(x)→ 0 if V is unbounded and |x| → ∞}. (2.6)

6. External electric field. The external electric field Ee = −∇ξe is the field when the system is
removed and replaced by the ambient medium, determined by

div[−εc∇ξe + Pe] = ρe, on V,

ξe − ξb = 0 on ΓD,

k(ξe − ξb)− n · [−εc∇ξe + Pe]− σ0 = 0 on ΓR.

(2.7)

Clearly, the external field is independent of the state variables (ρ,P) of the system.

7. Self electric field, interaction energy and self field energy. The self electric field E = −∇ξ is
the field induced by the system, satisfying

div[−εc∇ξ + P] = ρ on V,

ξ = 0 on ΓD,

kξ − n · [−εc∇ξ + P] = 0 on ΓR.

(2.8)
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Clearly, the total electric field is a sum of external field and self field:

−∇ξt = −∇ξe −∇ξ.

Further, we refer to

E int[ρ,P] =

∫
V

(ρξe + P · ∇ξe) and Eself [ρ,P] =
εc
2

∫
V
|∇ξ|2 (2.9)

as the interaction energy between the system and external field and the self field energy of
the system, respectively.

8. Internal energy of the system. We assume the internal energy of the system is an extensive
quantity in the sense that the internal energy of the system is equal to the sum of the internal
energies of any subdivision of the system. This property entails an internal energy density
Φ(x; ρ,P,∇ρ,∇P) such that the internal energy of the system is given by 6

U [ρ,P] =

∫
Ω

Φ(x; ρ,P,∇ρ,∇P), (2.10)

where the explicit x (position)-dependence of internal energy density Φ reflects that the
continuum body may generally be heterogeneous. By the principle of frame indifference and
material symmetries, Φ shall satisfy that

Φ(x; ρ,RP,∇ρ,R∇P) = Φ(x; ρ,P,∇ρ,∇P) ∀R ∈ So(3),

Φ(x; ρ,P, (∇ρ)Q, (∇P)Q) = Φ(x; ρ,P,∇ρ,∇P) ∀Q ∈ Gx,

where So(3) is the group of rigid rotations and Gx is the material symmetry group at point
x. Below we sometimes drop the explicit x-dependence of Φ in notation for brevity, unless
otherwise indicated.

9. Potential energy or boundary device energy. We refer to

P [ρ,P] =

∫
ΓR

1

2
k(ξt)2 +

∫
ΓD

ξbn · [−εc∇ξt + P + Pe], (2.11)

as the potential energy associated with the boundary devices. The first term can be identified
as the energy stored in the capacitors shown in Fig. 1 (b) while the second term can be
justified as the limit of k → +∞, see (2.13).

10. Total field energy. We call

E t[ρ,P] =
εc
2

∫
V
|∇ξt|2 (2.12)

the total field energy associated with the total electric field 7, and

U [ρ,P] + E t[ρ,P]

6There is no fundamental principle forbidding more sophisticated internal energy functions which will not be
considered here. The existence of internal energy density is essentially a constitutive postulation, resulting in a local
theory.

7Some writer may prefer identifying 1
2

∫
V
Et ·Dt as the total field energy. The total free energy remains invariant

upon transforming Φ → Φ + 1
2
(Dt − εcEt) · Et on Ω for this definition, and hence an equivalent theory is obtained

for linear dielectrics, as shown by R. D. James in a private communication. For general nonlinear media, additional
technical assumptions are needed to show the equivalence of two theories, cf., § 5. From this viewpoint, there is no
unique way to separate the field energy and internal energy, and hence the Maxwell stress and mechanical stress.
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the total internal energy. Below we reserve the terminology of “internal energy” for U defined
by (2.10), and avoid the terminology of total internal energy since it is not additive with
respect to the system, a property usually assumed for “internal energy”.

We remark that the Neumann boundary condition εcn·∇ξt−σ0 = 0 can be regarded as a special
case of the general Robin boundary condtion (2.4) by setting k = 0 8. The Dirichlet boundary
condition (2.3) may also be regarded as the limiting case of (2.4) by sending k → +∞. The
potential energy contributed by ΓR in this limit can be calculated as follows. Since ξt = ξ + ξe,∫

ΓR

1

2
k(ξt)2 =

∫
ΓR

[kξ(
1

2
ξ + ξe) +

1

2
k(ξe)2].

Upon sending k → +∞, it can be shown that ξ → 0, ξe → ξb on ΓR. Noticing that kξ =
n · [−εc∇ξ + P] on ΓR, we find that in the limit of k → +∞, the above integral is given by∫

ΓR

1

2
k(ξt)2 =

∫
ΓR

ξbn · [−εc∇ξ + P] + C1 =

∫
ΓR

ξbn · [−εc∇ξt + P + Pe] + C2, (2.13)

where C1, C2 are constants independent of ρ,P. The above equation verifies the consistence of the
two terms in the potential energy (2.11).

2.2 Free energy of the system

As usual, we identify the free energy of the system as the total energy of everything which, in present
context, includes the internal energy of the system, total field energy and potential energy 9:

F̃ [ρ,P] = U [ρ,P] + E t[ρ,P] + P [ρ,P] (2.14)

=

∫
V

[
χΩΦ(ρ,P,∇ρ,∇P) +

εc
2
|∇ξt|2

]
+

∫
ΓR

1

2
k(ξt)2 +

∫
ΓD

ξbn · [−εc∇ξt + Pt].

At this stage we do not attempt to justify (2.14) from a more fundamental, microscopic model. In
the absence of a boundary device, i.e., V = IR3 and k = ξb = σ0 = 0, the potential energy P [ρ,P]
associated with the boundary device clearly vanishes. In the presence of boundary device, P [ρ,P]
characterizes the system-dependent energy contributed by the boundary device.

It will be convenient to summarize a few identities which will be repeatedly used subsequently.
Consider the total field determined by (2.5). From the first of (2.5), we have that for any ζ ∈W,∫

V
ζ(ρ+ ρe) =

∫
V
ζdiv(−εc∇ξt + Pe + P)

=

∫
V

{
div[ζ(−εc∇ξt + Pe + P)]−∇ζ · [−εc∇ξt + Pe + P]

}
=

∫
∂V
ζn · (−εc∇ξt + Pe + P)−

∫
V
∇ζ · [−εc∇ξt + Pe + P]

}
,

8The reader is cautioned that the parallel plate capacitor illustrated in Fig. 1 cannot be used to realize Neumann
boundary condition (i.e., k = 0) since a plate conductor has a positive coefficient of capacity essentially proportional
to area, see discussions in §3.1. Then an interesting question is how one can physically realize a Neumann boundary
condition in electrostatics.

9Recall that entropy and temperature are held constant in our setting. Therefore, the difference between the
(internal) energy of everything and the Helmholtz free energy is a constant independent of the state variables.
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where n is the unit outward normal on ∂V , and the divergence theorem has been used for the last
equality. Similar calculations can be applied to ξe and ξ (cf. (2.7) and (2.8)). Therefore, we have
that for any ζ ∈W,

εc

∫
V
∇ζ · ∇ξt =

∫
V

[ζρt + Pt · ∇ζ]−
∫
∂V
ζn · (−εc∇ξt + Pt),

εc

∫
V
∇ζ · ∇ξe =

∫
V

[ζρe + Pe · ∇ζ]−
∫
∂V
ζn · (−εc∇ξe + Pe), (2.15)

εc

∫
V
∇ζ · ∇ξ =

∫
V

[ζρ+ P · ∇ζ]−
∫
∂V
ζn · (−εc∇ξ + P).

It will be convenient to rewrite the free energy (2.14) in a different form. Replacing ζ by ξe in
the last of (2.15) we obtain

εc

∫
V
∇ξe · ∇ξ =

∫
V

[ξeρ+ P · ∇ξe]−
∫
∂V
ξen · (−εc∇ξ + P).

Therefore, the sum of total field energy and potential energy can be rewritten as

E t[ρ,P] + P [ρ,P] =
εc
2

∫
V
|∇ξe|2 +

εc
2

∫
V
|∇ξ|2 +

∫
V

(ρξe + P · ∇ξe) +

∫
ΓD

ξbn · (−εc∇ξe + Pe)

+

∫
ΓR

ξe ·
{
− n · [−εc∇ξ + P] + kξ

}
+

∫
ΓR

1

2
k[ξ2 + (ξe)2]

= T0 +

∫
V

(ρξe + P · ∇ξe) +
εc
2

∫
V
|∇ξ|2 +

1

2

∫
ΓR

kξ2. (2.16)

where

T0 =
εc
2

∫
V
|∇ξe|2 +

∫
ΓR

1

2
k(ξe)2 +

∫
ΓD

ξbn · (−εc∇ξe + Pe).

It is clear that T0 defined above is independent of state variables (ρ,P) of the system, and hence
gives no contribution in variations of free energy with respect to changes of states of the system.
In particular, it has no effect on the Euler-Lagrange equations and stability analysis. Therefore,
we omit this term and call the following expression the free energy of the system as well:

F [ρ,P] = U [ρ,P] +

∫
V

(ρξe + P · ∇ξe) +
εc
2

∫
V
|∇ξ|2 +

∫
ΓR

1

2
kξ2. (2.17)

We remark that the energy is in analogy with the Landau-Lifshitz’s energy for micromagnetics
(Landau and Lifshitz, 1935), Landau-Ginzburg-Devonshire’s energy for ferroelectrics (Devonshire
1951; 1954), or Ginzburg-Landau’s energy for superconductivity (Ginzburg and Landau, 1950),
except that the boundary effects are explicitly accounted for in (2.17).

We will be interested in variations of free energy for different states of the system. Let (ρ1,P1) ∈
S be a new state, (ρ′,P′) = (ρ1,P1) − (ρ,P) be the difference between two states. Then the self-
field of (ρ1,P1), denoted by −∇ξ1, and the difference between two self field, denoted by −∇ξ′ =
−∇ξ1 +∇ξ, satisfy (2.8) with (ρ,P) replaced by (ρ1,P1) and (ρ′,P′), respectively. By (2.17) direct
calculations show that

F [ρ1,P1]− U [ρ1,P1] = F [ρ,P]− U [ρ,P] +

∫
V

(ρ′ξe + P′ · ∇ξe) (2.18)

+
εc
2

∫
V
|∇ξ′|2 + εc

∫
V
∇ξ · ∇ξ′ +

∫
ΓR

[
1

2
k(ξ′)2 + kξξ′].
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By the last of (2.15) with ξ (ζ) replaced by ξ′ (ξ) and the second of (2.8) (with ξ replaced by ξ′),
we have

εc

∫
V
∇ξ · ∇ξ′ +

∫
ΓR

kξξ′ =

∫
V

(ξρ′ + P′ · ∇ξ) +

∫
ΓR

ξ[kξ′ − n · (−εc∇ξ′ + P′)]

=

∫
V

(ξρ′ + P′ · ∇ξ).

Therefore, equation (2.18) can be rewritten as

F [ρ1,P1]− U [ρ1,P1] = F [ρ,P]− U [ρ,P] +

∫
V

(ρ′ξt + P′ · ∇ξt)

+
εc
2

∫
V
|∇ξ′|2 +

∫
ΓR

1

2
k(ξ′)2. (2.19)

In particular, the first variation contributed by the last three terms in (2.17) is given by

d

dδ

{
F [ρ+ δρ′,P + δP′]− U [ρ+ δρ′,P + δP′]

}∣∣∣∣
δ=0

=

∫
V

(ρ′ξt + P′ · ∇ξt), (2.20)

and the second variation contributed by the last three terms in (2.17) is given by

d2

dδ2

{
F [ρ+ δρ′,P + δP′]− U [ρ+ δρ′,P + δP′]

}∣∣∣∣
δ=0

=
εc
2

∫
V
|∇ξ′|2 +

∫
ΓR

1

2
k(ξ′)2. (2.21)

2.3 Principle of minimum free energy

We assume the system is at constant temperature and undergoes only reversible processes with
constant entropy. We are interested in equilibrium states of the system, the stability of equilibrium
states and how equilibrium states respond to external sources and boundary devices. To define
equilibrium states in the energy formulation, we postulate
Principle of minimum free energy. The (stable) equilibrium state of the system is a pair of
(ρ,P) ∈ S such that the free energy (2.14) is minimized among all admissible states S:

min
(ρ,P)∈S

F [ρ,P]. (2.22)

We remark that an equilibrium state necessarily satisfies

d

dδ
F [ρ+ δρ′,P + δP′]

∣∣∣
δ=0

= 0,
d2

dδ2
F [ρ+ δρ′,P + δP′]

∣∣∣
δ=0
≥ 0, (2.23)

which are also satisfied by metastable states. Here (ρ′,P′) are any perturbations such that (ρ,P)+
δ(ρ′,P′) ∈ S if |δ| is small enough. Further, it is tempting to justify the above principle of minimum
free energy by the fundamental laws of thermodynamics and, in particular, the Second Law, as for
the Helmholtz free energy in the classic setting of thermodynamics (Kittel and Kroemer 1980,
p. 68; Gibbs, 1878). For a general but different scenario, Fosdick and Tang (2007) presented an
elegant proof of the above statement from the Second Law. Besides the fundamental difficulties
elucidated in Ericksen (1991, ch. 1), pertaining to electrostatics additional conceptual difficulties
are encountered in such an attempt. First, in classic thermodynamics we consider a closed system
which can exchange energy with a heat reservoir and undergo irreversible processes, the equilibrium
state of the system is defined as the state that satisfies the prescribed macroscopic constraints and
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has maximum entropy together with the surroundings (i.e., the most probable state). From this
definition, it can be shown that the Helmholtz free energy of the system at a constant temperature is
minimized for the equilibrium state (Kittel and Kroemer 1980, p. 68; Ericksen 1991, p. 9). Here it
is unclear whether our system can be regarded as “closed” or not since it induces a nonlocal electric
field and interacts with external sources and the boundary devices. Second, we have constrained the
system such that it has constant temperature and constant entropy, and hence heat exchanges and
generations are impossible. Therefore, the Second Law is somewhat irrelevant; the system would
behave exactly the same at a finite temperature as at the zero temperature if the internal energy
were independent of temperature. Third, even if we assume the internal energy were independent
of temperature, the system were at the zero temperature, and hence the system should be at its
ground state with minimum total energy, we still have the difficulty in justifying the internal energy
of the system can indeed be written in the form of (2.10) in regard of possible “internal variables
and fine-scale oscillations” of state variables in a physical non-idealized medium (James and Müller
1994).

Instead of addressing these conceptual obstacles, we regard the above principle of minimum
free energy as a postulation defining equilibrium states. For modeling physical media we also need
to specify the functional form of internal energy density Φ and the admissible states S, which are
again postulations based on “good physical judgement” (Ericksen 1991, p. 7). The usefulness and
self-consistence of these postulations will be demonstrated by showing that

1. The law of energy conservation takes the form of

dF = −dW, (2.24)

where dW is work done by the system when the system is mechanically perturbed.

2. The associated Euler-Lagrange equations and boundary conditions are consistent with the
Maxwell field equations (1.1) upon choosing appropriate and physically intuitive internal
energy density function Φ and admissible space S for typical media.

2.4 Conservation of energy

To justify our definition of free energy of the system, we show the law of conservation of energy
can be expressed as (2.24) when the system is mechanically perturbed, i.e., a subbody P ⊂ Ω is
translated by an external mechanical force. For simplicity we assume ρ is piecewise smooth and
P is continuous, piecewise smooth such that ∇∇ξt is bounded and piecewise smooth on V as well
(i.e., ξt ∈W 2,∞, see Evans, 1998), and postpone cases of more singular (ρ,P) to §7.2.

First, the classic electrostatics asserts that in an electric field Ẽ the force on a point charge q
and a point dipole p is given by

qẼ and (∇Ẽ)p, (2.25)

respectively, see, e.g., Jackson (1999, (1.1) and (5.69)). We emphasize that the above force formulas
hold only if the charge or dipole does not affect their experienced electric field so that there is no
ambiguity in the electric field Ẽ used in (2.25). At the proximity of boundary devices, the above
electric field is not just the external electric field; it should also include the change of field due to
the presence of the point charge or dipole, as one will see in §7.2.

To calculate the electrostatic force on a subbody P ⊂ Ω, we divide the subbody P into in-
finitesimal parts. Then the field experienced by each infinitesimal part, to the leading order, is
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unambiguously given by the local total electric field Et = −∇ξt. Therefore, upon summing over
all infinitesimal parts, we obtain that the force on the subbody P is given by

f =

∫
P

[−ρ∇ξt − (∇∇ξt)P]. (2.26)

Here, we stress that the above formula is valid for any boundary device as long as the charge and
polarization distributions are such that the above integral is finite, e.g., ρ is piecewise smooth and
P is continuous, piecewise smooth restricted to P. The reader is cautioned that in the presence
of a boundary device, the argument to recover (2.25) from (2.26) by sending a smooth sequence
(ρ,P) to a point charge or a point dipole demands particular care since the local field −∇ξt goes
to infinity as well in the limit.

Moreover, we consider a process of shifting the subbody P to a new position x→ x + δe in the
direction of e for some positive δ << 1, and denote the new configuration of the subbody by

Pδ = {xδ : xδ = x + δe,x ∈ P}.

For simplicity we assume Pδ does not penetrate into the rest of the body Ω \ P 10. Then the new
charge density ρδ and polarization Pδ is given by 11{

ρ→ ρδ(x) = ρ(x)− ρ(x)χP + ρ(x− δe)χPδ ,

P→ Pδ(x) = P(x)−P(x)χP + P(x− δe)χPδ ,
(2.27)

where χP (χPδ) denotes the characteristic function of P (Pδ). From (2.26), an external mechanical
force f e = −f is needed to maintain the force balance on Pδ and the mechanical work done by the
system in this process, to the leading order of δ, is given by

dW = −δf e · e = δf · e. (2.28)

We now calculate the change of free energy in this process. Clearly, the new state (ρδ,Pδ)
has the same internal energy as the original state (ρ,P) by the assumed additive property, i.e.,
(2.10) 12. By (2.19) we find that the change of free energy is given by

dF = F [ρδ,Pδ]− F [ρ,P] =

∫
V

[
ξt(ρ(x− δe)χPδ − ρχP) +∇ξt · (P(x− δe)χPδ −PχP)

]
=

∫
P

[(ξt(x + δe)− ξt(x))ρ+∇(ξt(x + δe)− ξt(x)) ·P]. (2.29)

Recall that P and ρ are bounded on P and ∇∇ξt are well-defined on P almost everywhere. Com-
paring (2.26) with (2.29) we obtain identity (2.24), as one expects from conservation of energy 13.

10In general we may divide the overall body Ω into N subbodies and shift each subbody independently in directions
such that they do not penetrate into each other. A similar but more complicate calculation will enable us to withdraw
idenity (2.24) for all such processes.

11Here it is tacitly assumed that the gap between the perturbed subbody Pδ and the rest of body Ω \ P has zero
polarization, i.e., is filled with the “unpolarizable” ambient medium with zero internal energy. This is of critical
importance since the force depends on the ambient medium.

12If the internal energy depends on spatial gradients of state variables, e.g., ∇ρ or ∇P, it would cost energy to
create new surfaces in the new state (ρδ,Pδ). This energy is independent of δ, and hence does not affect our results.

13Some writer may prefer starting from (2.24), and regarding (2.28) as the definition of the force on the subbody
P, equation (2.26) as the consequence.
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At the presence of boundary devices, it is worthwhile noticing that the work done to the system
is not all stored as internal energy of the system and field energy. To see this, by (2.14) we have

dF = dF̃ = dU + dE t + dP,

where

dP =

∫
ΓR

kξtdξ +

∫
ΓD

ξbd[n · (−εc∇ξ + P)] (2.30)

represents the work absorbed by the boundary device in this process and is of practical importance
for energy harvesting.

2.5 Euler-Lagrange equations

We now derive the Euler-Lagrange equations associated with the principle of minimum free energy
(2.22). For clarity we consider a generic situation, assuming that the body Ω is open, bounded,
connected, and the admissible space for charge density and polarization (ρ,P) is given by

S = Cq × P, Cq := {ρ :

∫
Ω
ρ = q}, P := {P :

∫
Ω
|P|2 < +∞}, (2.31)

where q is the total charge on Ω. We again emphasize that the admissible space is a material
property; it shall be chosen based on “good physical judgement” or experiments instead of the
well-posedness of the mathematical problem (Ericksen 1975), and one choice may be reasonable for
one material but fail for a different material. Moreover, for a specified medium, we may have more
constraints on state variables. For example, we shall assume P = 0 for conductors and set ρ = 0
for uncharged dielectrics.

Further, the internal energy density function Φ(ρ,P,∇ρ,∇P) is a mapping from IR × IR3 ×
IR3 × IR3×3 to IR. We rewrite this function as

Φ = Φ(ρ,P,g,G),

assume it is smooth with respect to arguments (ρ,P,g,G), and denote its differentiations with
respect to its arguments by

DρΦ =
∂Φ

∂ρ
, DPΦ =

∂Φ

∂P
, DgΦ =

∂Φ

∂g
, DGΦ =

∂Φ

∂G
.

To calculate the first variation of free energy, we consider a smooth perturbation of state vari-
ables (ρ,P) for |δ| << 1,

(ρ,P)→ (ρ+ δρ′,P + δP′),

where (ρ′,P′) and all their derivatives are assumed to vanish on ∂Ω. The first variation contributed
by the internal energy is given by

d

dδ
U [ρ+ δρ′,P + δP′]

∣∣∣
δ=0

=

∫
Ω

{
[DρΦ− divDgΦ]ρ′ + [DPΦ− divDGΦ] ·P′

}
.

Recall that the first variation contributed by the field energy and boundary potential energy is given
by (2.20). Therefore, for a stationary point (ρ,P) ∈ S of the free energy F [P, ρ], it necessarily
satisfies {

DρΦ− divDgΦ + ξt = φ0 on Ω,

DPΦ− divDGΦ +∇ξt = 0 on Ω,
(2.32)
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where the constant φ0 ∈ IR is the Lagrangian multiplier associated with the constraint in (2.31).
We remark that the physical interpretations of the Euler-Lagrange equations (2.32) are versatile.

If the internal energy density function Φ is independent of ∇ρ and ∇P, eqautions in (2.32) can be
regarded as constitutive laws between (ρ,P) and (−ξt,−∇ξt). Inserting (2.32) into (2.5), we obtain
a boundary value problem which can be used to determine the total electric field −∇ξt and state
variables (ρ,P). Media that can be described by (∇ρ,∇P)-independent internal energy density
functions include conductors and dielectrics. If the internal energy density function Φ is allowed
to depends on ∇ρ or ∇P, we need to specify boundary conditions on (ρ,P) for (2.32) which,
together with (2.5), can be used to determine state variables (ρ,P). Such (∇ρ,∇P)-dependent
internal energy density functions are necessary for ferroelectrics and the model of orbital-free density
functional theory. Below we describe these media or models in details. For brevity and with an
abuse of notation, we omit in notation trivial arguments of which the internal energy density is
independent, e.g., Φ = Φ(ρ), Φ = Φ(ρ,∇ρ), Φ = Φ(P) or Φ = Φ(P,∇P).

3 Theories for typical media

In this section we postulate internal energy density functions Φ based on physical intuitions and
experiments, and recover the classic theories for typical media including conductors, dielectrics and
ferroelectrics.

3.1 Conductors

We first consider a collection of mutually disconnected conductors Ωa with charge qa (a = 1, · · · , N ; Ω =
∪Na=1Ωa), as illustrated in Fig. 2(a). The classic theory of electrostatics implies that the total electric
fields are determined by

div[−εc∇ξt + Pe] = ρ+ ρe on V,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · (−εc∇ξt + Pe)− σ0 = 0 on ΓR,

ξt = φa on Ωa, a = 1, · · · , N,

(3.33)

where φa (a = 1, · · · , N) are constants to be determined by∫
∂Ω+

a

n · (−εc∇ξt + Pe) =

∫
∂Ω+

a

n · (−εc∇ξ) = qa, (3.34)

and ∂Ω+
a represents exterior boundary values on ∂Ωa and n is the outward normal on ∂Ωa. The

first equality in the above equation follows by applying the divergence theorem to external electric
displacement on Ω+

a :
∫
∂Ω+

a
n · (−εc∇ξe + Pe) =

∫
Ω+
a

div(−εc∇ξe + Pe) = 0. Equations (3.33) and
(3.34) completely determine the electric fields in space and charge distributions on the conductors.
In particular, there is no free charge inside conductors (i.e., ρ = 0 inside Ωa) and the surface charge
density on ∂Ω are given by

σn = n · (−εc∇ξt + Pe) on ∂Ω. (3.35)

To recover predictions of (3.33)-(3.35) in our energy formulation, we only need charge density
ρ : Ω→ IR to describe states of conductors and postulate the admissible space as

S := {(ρ,P) :

∫
Ωa

ρ = qa (a = 1, · · · , N), P = 0}. (3.36)
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Since charges in conductors are “free”, we choose the internal energy density function as

Φ(ρ) ≡ 0. (3.37)

Then the first of (2.32) implies the last of (3.33) while the rest of (3.33) coincide with (2.5).
Further, we observe that by (2.21) the second variation of the free energy is positive, and hence
the stationary state (ρ,P) satisfying (2.32) and (2.5) (i.e., (3.33)) is indeed the global minimizer.
Therefore, we conclude that the principle of minimum free energy in current formulation implies
the same equilibrium state as the classic theory for conductors. We remark that the variational
principle (2.22) with the internal energy density (3.37) for conductors are well-known and referred
to as Thomson’s Theorem, see Landau et al. (1995, p. 6) and Kovetz (2000, p. 115).

The presence of conductors result in the free energy F [ρ,P] changes from zero (obtained by
evaluating (2.17) at ρ = P = 0 ) to

Fmin[ρ, 0] =

∫
V
ρξe +

εc
2

∫
V
|∇ξ|2 +

∫
ΓR

1

2
kξ2, (3.38)

where the self potential ξ = ξt − ξe and charge density ρ (more precisely, surface charge density)
are determined by (3.33), (3.34) and (3.35). By the divergence theorem we have

εc

∫
V \Ω
|∇ξ|2 = −

∫
ΓR

kξ2 +

N∑
a=1

∫
∂Ω+

a

ξn · (−εc∇ξ), (3.39)

where n is the outward normal on ∂Ωa and the last two of (2.8) has been used to rewrite the
integral on ∂V . Noticing that ξe = φa − ξ on ∂Ω+

a , the surface charge density on conductor
σn = n · (−εc∇ξ) + n · (−εc∇ξe + Pe) on ∂Ω+

a , and
∫
∂Ω+

a
n · (−εc∇ξe + Pe) = 0, by (3.39) we obtain∫

V
ρξe =

N∑
a=1

∫
∂Ω+

a

[
(φa − ξ)n · (−εc∇ξ) + ξen · (−εc∇ξe + Pe)

]
=

N∑
a=1

φaqa +

N∑
a=1

∫
∂Ω+

a

ξn · (εc∇ξ) +

N∑
a=1

∫
∂Ω+

a

ξen · (−εc∇ξe + Pe)

=

N∑
a=1

φaqa − εc
∫
V
|∇ξ|2 −

∫
ΓR

kξ2, (3.40)

where the identity
∫
∂Ω+

a
ξen · (−εc∇ξe + Pe) = −εc

∫
Ωa
|∇ξe|2 = −εc

∫
Ωa
|∇ξ|2 has been used in

the last equality. Inserting (3.40) into (3.38) we find the minimum free energy of a collection of
conductors is given by

Fmin[ρ, 0] =

N∑
a=1

φaqa −
εc
2

∫
V
|∇ξ|2 −

∫
ΓR

1

2
kξ2. (3.41)

The above formula of minimum free energy will be useful for studying mutual interactions between
conductors and with external sources. For example, if the conductor (N = 1) is neutral (q1 = 0),
by (3.41) we have Fmin[ρ, 0] = − εc

2

∫
V |∇ξ|

2 −
∫

ΓR
1
2kξ

2, and hence conclude that the conductor is
roughly attracted to high external field since |∇ξ| ∼ |∇ξe|. If the conductor is small, the left hand
side of (3.40), to the leading order, can be rewritten as∫

V
ρξe =

∫
V
ρ(ξe(x0) + (x− x0) · ∇ξe) ≈ p · ∇ξe(x0), p =

∫
V
ρx,
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Figure 2: System of various media: (a) Ωa (a = 1, · · · , N) represent disconnected conductors
in V ; (b) Ωc represents an isolated conducting body whereas Ωd represents a polarizable
dielectric body.

where x0 is typically chosen as the center of domain Ω1. Therefore, the minimum free energy is
approximately given by

Fmin[ρ, 0] =
1

2

∫
V
ρξe =

1

2
p · ∇ξe(x0), (3.42)

which has been used by Landau et al. (1995, p. 6) for deriving the “free energy” associated with a
dipole. Further, if there is no external field (−∇ξe = 0), then by (3.40) and within a constant we
have Fmin[ρ, 0] = 1

2

∑N
a=1 φaqa = 1

2

∑N
a,b=1Cabqaqb, where Cab are referred to as the coefficients of

capacity if a = b and coefficients of electrostatic induction if a 6= b, see Landau et al. (1995, §2).

3.2 Dielectrics

3.2.1 Nonlinear dielectric media

We only need polarization P : Ω→ IR3 to describe states of dielectrics and postulate the admissible
space for state variables as

S := {(ρ,P) : ρ = 0 in Ω,

∫
Ω
|P|2 < +∞}. (3.43)

For dielectric media, a constitutive relation Et = Ê(P) between the total electric field and
polarization can be postulated or measured by experiments, which in general may be a nonlinear
function. Then the Maxwell’s equations imply

div[−εc∇ξt + P + Pe] = ρe in V,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · [−εc∇ξt + Pe + P]− σ0 = 0 on ΓR,

Et = −∇ξt = Ê(P) in Ω.

(3.44)

To recover the last of the above equation as the Euler-Lagrange equation associated with the
principle of minimum free energy, by the second of (2.32) we define an internal function Φ : IR3 → IR
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such that

DPΦ(P) = Ê(P). (3.45)

Therefore, for a given constitutive law specifying the functional dependence of total electric field
on polarization Et = Ê(P), we can construct the proper internal energy density function as

Φ(P) =

∫
γ(0,P)

Ê(P1) · dP1, (3.46)

where γ(0,P) is any smooth integration path with initial point 0 and final point P. From the
hypothesis that the medium is non-dissipative, we infer that the above integral depends only on
its initial and final points, i.e., no hysteresis. Conversely, if the internal energy density function
Φ = Φ(P) is specified, we infer the above constitutive law (3.45) by the last of (2.32), which relates
the local total electric field and polarization.

3.2.2 Linear dielectric media

For a linear dielectric body Ω with permittivity tensor ε, the polarization and total electric field
are determined by the Maxwell’s equations:

div[−εc∇ξt + P + Pe] = ρe in V,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · [−εc∇ξt + Pe + P]− σ0 = 0 on ΓR,

P = −εcχ∇ξt in Ω.

(3.47)

where χ = ε/εc−I is the dimensionless susceptibility tensor. To recover the linear relation between
polarization and local total electric field, by (3.46) the internal energy density function shall be
given as

Φ(P) =
1

2
P ·AP, A =

1

εc
χ−1. (3.48)

Then the last of (2.32) implies

AP = −∇ξt on Ω, (3.49)

which, together with (2.5), is exactly the same problem as (3.47).
Further, by (2.21) we find that the second variation of free energy is given by

d2

dδ2
F [0,P + δP′]

∣∣∣
δ=0

=
1

2

∫
Ω

P′ · (ε− εcI)−1P′ +
εc
2

∫
V
|∇ξ′|2 +

∫
ΓR

1

2
k(ξ′)2

Therefore, if ε−εcI is semi-positive definite, the above second variation is positive and hence the sta-
tionary state satisfying (3.47) (i.e., (2.32) and (2.5)) is the (in fact, global by convexity) minimizing
state. We conclude that the principle of minimum free energy implies the same equilibrium state
as the classic theory for linear dielectric media. If, however, ε− εcI has a negative eigenvalue, the
equilibrium state determine by (3.47) is unstable. We can construct polarization states with lower
free energy than the stationary state satisfying (2.32), though the boundary value problem (3.47)
is still strictly elliptic and well-posed for positive definite ε. From this viewpoint, we may conclude
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that dielectric materials shall always have permittivity larger than that of vacuum, which, to our
best knowledge, is indeed so 14,15.

Additionally, it is worthwhile noticing that the minimum free energy (i.e., when the Euler-
Lagrange equation (3.49) is satisfied) is given by (cf., (11.7) in Landau et al. 1995)

Fmin[0,P] =
1

2

∫
V

P · ∇ξe. (3.50)

To see this, inserting (3.49) into (2.17) we obtain

F [0,P] = − 1

2

∫
V

P · ∇ξt +

∫
V

P · ∇ξe +
εc
2

∫
V
|∇ξ|2 +

∫
ΓR

1

2
kξ2. (3.51)

Moreover, by the last of (2.8), i.e., n · (−εc∇ξ + P) = kξ on ΓR, and the last of (2.15) with ζ
replaced by ξ and ρ = 0, we have

εc
2

∫
V
|∇ξ|2 =

1

2

∫
V

P · ∇ξ − 1

2

∫
ΓR

kξ2.

Inserting the above equation into (3.51) we obtain (3.50).
We remark that the minimum free energy (3.50) shall not be confused with the interaction field

energy defined in the first of (2.9) for their similarity in appearance. Above all, the polarization P
in the minimum free energy (3.50) is the minimizing state, satisfies the Euler-Lagrange equation
(3.49), and hence is completely determined by (3.47), whereas the interaction field energy in (2.9) is
defined for all polarization states. Also, the expression (3.50) applies only to linear dielectric media
and is convenient for modeling phase transitions (i.e., the domain Ω of the system is changing)
where the system has additional degrees of freedom and the minimizing polarization can be a priori
determined, see, e.g., Cheng and Chaddock (1984).

3.2.3 Conductors as a linear dielectric medium with infinite permittivity

The conductor can also be characterized as a linear dielectric medium with an infinite permittivity
or a dielectric medium with internal energy density function given by Φ(P) ≡ 0. To see this, we
assume isotropic permittivity tensor ε = ε1I. As ε1 → +∞ equation (3.48) implies that A = 0
and Φ(P) = 0. Also, by the last of (3.47), we see that ξt necessarily remains constant on each
connected component of Ω, and henceforth, equation (3.47) is equivalent to (3.33). In addition, the
minimum free energy formula (3.50) is consistent with (3.42) for a small conductor.

3.3 Ferroelectric media

Ferroelectric crystals may be described by postulating the internal energy density as

Φ(P,∇P) =
α

2
|∇P|2 + ψ(P), (3.52)

where α > 0 is the exchange constant and ψ : IR3 → IR is the part of internal energy density
depending only on local polarization. To reflect that the crystal has certain preferred directions

14An argument for this fact is presented in §14 of Landau et al. (1995) from the viewpoint of quantum mechanics.
We also note that in this stability argument, εc must be chosen as that of vacuum since other choices would make
the admissible space (3.43) unphysical, see more detailed discussions in § 5.

15It is worthwhile noticing that there exist diamagnetic materials with magnetic permeability smaller than that of
vacuum, e.g., water. This arises from microscopic orbital currents instead of magnetic dipoles (Ashcroft and Mermin,
1976, §31).
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and magnitude of polarization, ψ is postulated to be nonconvex and have a multi-well structure,
attains its minimum at those preferred directions and magnitude of polarization, and is also referred
to as the anisotropy energy. By (2.5) and (2.32), the boundary value problem for (ξt,P) is as follows:

div[−εc∇ξt + P + Pe] = ρe on V,

−α∆P +DPψ(P) +∇ξt = 0 on Ω,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · [−εc∇ξt + P + Pe]− σ0 = 0 on ΓR.

(3.53)

We remark that the above problem is not yet closed; a boundary condition shall be provided for
P, which is typically chosen as (∇P)n = 0 on ∂Ω. The physical meaning/justification of this
boundary condition, however, appears to be elusive. Also, the variational principle (2.22), together
with the free energy functional (2.17) and internal energy density (3.52), is referred to as the
Landau-Ginzburg-Devonshire theory of ferroelectrics (Landau, 1937; Ginzburg and Landau, 1950;
Devonshire, 1949; 1954; Cao 2008).

Though it can be shown that the above boundary value problem admits a solution (in a suitable
Sobolev space W 1,p with some moderate growth assumption on ψ at the infinity), the solution is
in general complicated. Nevertheless, when the ferroelectric body Ω is a single-crystal ellipsoid,
the external field −∇ξe is uniform on Ω, and the boundary ∂V is far away and can be neglected
for problem (2.8), closed-form solutions to (3.53) can be found (i) in the small-body limit where
the exchange term forces the crystal to be a single domain, and (ii) in the large-body limit where
the exchange term has no influence on the macroscopic domain structures and may be neglected
(DeSimone, 1993). The solution in the small-body limit is the foundation of the well-known Stoner-
Wohlfarth model for hysteresis in the context of ferromagnetics (Stoner and Wohlfarth, 1948); the
solution in the large-body limit has been analyzed in Shu and Bhattacharya (2001) and Desimone
and James (2002) where the effects of strain have also been taken into account.

3.4 Effects of a conductor on a polarizable body

A great conceptual advantage offered by our energy formulation lies in that the internal energy is
additive. Therefore, if two bodies of different properties are placed together, the total free energy
can be easily identified. For example, we consider a collection of a conductor Ωc and a polarizable
body Ωp as illustrated in Fig. 2(b). Recall that Pe = ρe = 0 on Ω = Ωc ∪ Ωp, and for simplicity
assume that Ωc is connected. The admissible space for (ρ,P) is prescribed as

S = {(ρ,P) :

∫
Ωc

ρ = q0; ρ = 0 on V \ Ωc; P = 0 on V \ Ωp}. (3.54)

From discussions in §3.1-3.2, we infer that the total free energy of the system including both the
conductor Ωc and polarizable body Ωp is given by

F [ρ,P] =

∫
Ωp

Φ(P,∇P) +

∫
V

(ρξe + P · ∇ξe) +
εc
2

∫
V
|∇ξ|2 +

∫
ΓR

1

2
kξ2, (3.55)

where the self field is determined by (2.8).
In applications, our interest usually lies in the polarizable body Ωp instead of the conductor.

We therefore introduce an effective free energy for the polarizable body alone:

Fp[P] = min
ρ
F [ρ,P], (3.56)
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where the admissible space for charge density ρ is still specified by (3.54). By the first of (2.32),
the self potential satisfies that, in addition to (2.8),

ξ + ξe = φ0 on Ωc, (3.57)

where φ0 is the potential of the conductor determined by∫
∂Ω+

c

n · [−εc∇(ξ + ξe) + P + Pe] =

∫
∂Ω+

c

n · (−εc∇ξ + P) = q0. (3.58)

Further, it is desirable to separate the contribution to the self field of the polarizable body Ωp from
that of the conductor Ωc. To this end, we introduce ξp and ξc by

div[−εc∇ξp + P] = 0 on V \ Ωc,

ξp = −ξe on Ωc,

ξp = 0 on ΓD,

kξp − n · [−εc∇ξp + P] = 0 on ΓR,

(3.59)


∆ξc = 0 on V \ Ωc,

ξc = 1 on Ωc,

ξc = 0 on ΓD,

kξc + εcn · ∇ξc = 0 on ΓR,

(3.60)

and denote by

q̂ = −
∫
∂Ω+

c

εcn · ∇ξc, σp = n · [−εc∇ξp + P] on ∂Ω+
c . (3.61)

We remark that q̂, independent of polarization on Ωp, may be interpreted as the capacity of the
conductor Ωc (cf., (3.62)) whereas σp, depending on the polarization P, may be interpreted as the
surface charge density on ∂Ω+

c induced by the polarization on Ωp. Direct calculations verify that

ξ = ξp + φ0ξ
c, φ0 =

1

q̂
(q0 − qp), qp :=

∫
∂Ω+

c

n · (−εc∇ξp + P) =

∫
∂Ω+

c

σp

satisfies (2.8), (3.57) and (3.58), and hence −∇ξ = −∇ξp−φ0∇ξc is the self field. By (3.59), (3.60),
(3.61) and the divergence theorem, we have∫

V \Ωc
εc∇ξc · ∇ξp =

∫
V \Ωc

[
div(εcξ

p∇ξc)− ξpdiv(εc∇ξc)
]

=

∫
∂V
εcξ

pn · ∇ξc −
∫
∂Ω+

c

εcξ
pn · ∇ξc,

εc
2

∫
V \Ωc

|∇ξc|2 +

∫
ΓR

1

2
k(ξc)2 = −εc

2

∫
∂Ω+

c

ξcn · ∇ξc =
q̂

2
. (3.62)

Therefore, the last two terms on the right hand side of (3.55) can be written as

εc
2

∫
V
|∇ξ|2 +

∫
ΓR

1

2
kξ2 =

εc
2

∫
V
|∇ξp|2 − φ0

∫
∂Ω+

c

εcξ
pn · ∇ξc +

q̂

2
φ2

0

+φ0

∫
ΓR

{εcξpn · ∇ξc + kξcξp}+

∫
ΓR

1

2
k(ξp)2 (3.63)

=
εc
2

∫
V
|∇ξp|2 +

∫
ΓR

1

2
k(ξp)2 +

q̂

2
φ2

0 − φ0

∫
∂Ω+

c

εcξ
pn · ∇ξc.
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Additionally, the (surface) charge density ρ on the conductor is given by σn = n · (−εc∇ξt + Pt) =
n · [−εc∇(ξp + ξe) + P + Pe] + φ0n · (−εc∇ξc) on ∂Ω+

c , and hence (cf., (3.61))∫
V
ρξe =

∫
∂Ω+

c

[
ξeσp + φ0ξ

en · (−εc∇ξc) + ξen · (−εc∇ξe + Pe)
]
. (3.64)

The effective free energy for the polarizable body Ωp, defined as (3.56), follows by evaluating (3.55)
at the equilibrium charge density. Inserting (3.63)-(3.64) into (3.55), and noticing that ξp = −ξe
on ∂Ω+

c and that
∫
∂Ω+

c
ξen · (−εc∇ξe + Pe) = −εc

∫
Ωc
|∇ξe|2, we find that the effective free energy

of the polarizable body is given by

Fp[P] =

∫
Ωp

Φ(P,∇P) +

∫
V \Ωc

εc
2
|∇ξp|2 +

∫
Ωp

P · ∇ξe +

∫
ΓR

1

2
k(ξp)2 +

∫
∂Ω+

c

ξeσp +
q̂

2
φ2

0. (3.65)

In particular, if V = IR3 (k = 0) and ξe = 0, the above expression can be rewritten as

Fp[P] =
(q0 − qp)2

2q̂
+

∫
Ωp

Φ(P,∇P) +
εc
2

∫
IR3\Ωc

|∇ξp|2. (3.66)

Comparing (3.65) and (3.66) with (2.17), we observe that a conductor influences the polarizable
body in two aspects: (i) there are additional energy cost associated with polarization on Ωp since
it induces redistribution of charges on the conductor, i.e., the last two terms in (3.65); (ii) the
definition of “self field” −∇ξp now depends on the external potential ξe and domain Ωc, see (3.59).
The effective free energies obtained in (3.65) and (3.66) may serve as the starting point for modeling
interactions between conductors and polarizable/ferroelectric bodies.

3.5 Model of orbital-free density functional theory

It is interesting to notice that the present framework may include the orbital-free model in density
functional theory. In this model, the state variable is the charge density or electron density ρ and
the internal energy density is given by (Parr and Yang, 1989)

Φ(ρ,∇ρ) =
λ

8ρ
|∇ρ|+ CFρ

5/3 + Exc(ρ) =
λ

8ρ
|∇ρ|+ ψ(ρ),

where λ,CF are constants, Exc(ρ) is referred to as the exchange and correlation energy, the first
two term terms describe the kinetic energy of electrons, and ψ(ρ) = CFρ

5/3 + Exc(ρ) is introduced
for ease of notation. Also, the external sources consist only of nuclei charges at the lattice points
(i.e., Pe = 0). By (2.5) and (2.32), the boundary value problem for (ξt, ρ) is given by

div(−εc∇ξt) = ρ+ ρe on V,

− λ
8ρdiv(1

ρ∇ρ) +Dρψ(ρ) + ξt = φ0 on Ω,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · (−εc∇ξt)− σ0 = 0 on ΓR.

(3.67)

Again, a boundary condition on ρ shall be provided on ∂Ω to close the problem, which is typically
chosen as ρ = 0 on ∂Ω. Since ρe oscillates at the atomistic lengthscale, a local variational formu-
lation in terms of both electrostatic potential and charge density (ξt, ρ) would be convenient for
numerical simulations, which has been developed in Gavini et al. (2007), also see discussions in
§4.2.
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4 Alternative variational formulations and their equivalence

Because of the freedom in choosing formal state variables and separation between internal energy
and field energy, one can construct infinitely many variational principles that are consistent with the
Maxwell field equations (1.1). Below we select three typical formulations and explore their mutual
relations. The reader is referred to Bustamante et al. (2009) for other alternative formulations.

4.1 Landau’s formulation

As shown in § 2.2, the free energy functional (2.17) different from the original free energy func-
tional (2.14) by a constant independent of the state variables (ρ,P). In the absence of boundary
devices, i.e., V = IR3 and k = 0, we recover the familiar Landau-Ginzburg-Devonshire’s energy
functional 16

F [ρ,P] =

∫
Ω

Φ(ρ,P,∇ρ,∇P) +

∫
Ω

(ρξe + P · ∇ξe) +
εc
2

∫
IR3
|∇ξ|2, (4.1)

where the self field −∇ξ satisfies{
div(−εc∇ξ + P) = ρ on IR3,

|∇ξ| → 0 as |x| → +∞.
(4.2)

For simplicity it is frequently assumed that the external field −∇ξe is uniform on Ω. From the
procedure of arriving at (4.1) from (2.14) and the definitions (2.7) and (2.8), one sees that this
simplification, in addition to a uniform external field, requires that Ω is far away from the physical
boundary ∂V such that the solution to (4.2) is indeed a good approximation of the solution to (2.8).

4.2 Toupin’s formulation

From a practical viewpoint, the postulated free energy (2.14) or (2.17) suffers from the disadvantage
that the total electric field or self field energy depends on state variables (ρ,P) nonlocally which
gives rise to the difficulty of, e.g., deriving the first order and second order variations of the free
energy. We overcome this difficulty by using divergence theorem in (2.20) and (2.21). In the absence
of charges, i.e., ρ ≡ 0, an alternative way of addressing this issue is to rewrite the last two terms
on the right hand side of (2.17) as

εc
2

∫
V
|∇ξ|2 +

∫
ΓR

1

2
kξ2 =

1

2

∫
Ω

∫
Ω

K(x,x′)P(x)P(x′), (4.3)

where the matrix kernel K(x,x′) is such that

∇ξ(x) =

∫
V

K(x,x′)P(x′) dx′

is the solution to (2.8). The explicit form of this kernel can be found for simple domains V , e.g., a
unit ball, and simple boundary conditions, e.g., ΓR = ∅.

Moreover, for the same disadvantage the energy formulation based on (2.17) and (2.22) implies
no clear numerical method. If one attempts to discretize the problem by, e.g., the finite element

16This type of energy functional is referred to as the Landau-Lifshitz energy in micromagnetics (Landau and
Lifshitz, 1935; Brown, 1966, p. 73) and the Ginzburg-Landau energy in superconductivity (Ginzburg and Landau,
1950).
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method, one immediately sees that the last two terms in (2.17), i.e., the left hand side of (4.3),
give rise to a non-sparse matrix because of the nonlocal interaction between the polarizations as
demonstrated by the right hand side of (4.3). These issues may be remedied by Toupin’s formulation
in which the energy functional is given by 17

ẼT [ρ,P, ζ] = U [ρ,P] +

∫
V

[(P + Pe) · ∇ζ + (ρ+ ρe)ζ]

−εc
2

∫
V
|∇ζ|2 −

∫
ΓR

[ 1

2
kζ2 − ζ(kξb + σ0)

]
, (4.4)

and the state variables and total electric field is determined by the min-max problem:

min
(ρ,P)∈S

max
ζ∈Wξb

ẼT [ρ,P, ζ], (4.5)

where Wξb := {ζ ∈W : ζ = ξb on ΓD} (cf., (2.6)). The predictions of (2.22) and (4.5) will be the
same if it holds that

F̃ [ρ,P]− max
ζ∈Wξb

ẼT [ρ,P, ζ] = a constant independent of state variables (ρ,P). (4.6)

Indeed, by the standard first-variation calculation we find the Euler-Lagrange equation for a max-
imizer ξt of the inner maximization problem in (4.5) is precisely (2.5). Therefore, by (2.5) and the
first of (2.15) with ζ being replaced by ξt we obtain

max
ζ∈Wξb

ẼT [ρ,P, ζ] = ẼT [ρ,P, ξt] = U [ρ,P] +
εc
2

∫
V
|∇ξt|2

+

∫
∂V
ξtn · (−εc∇ξt + P + Pe) +

∫
ΓR

[
− 1

2
k(ξt)2 + ξt(kξb + σ0)

]
= U [ρ,P] +

εc
2

∫
V
|∇ξt|2 +

∫
ΓR

1

2
k(ξt)2 +

∫
ΓD

ξbn · (−εc∇ξt + P + Pe).

Comparing the right hand side of the above equation with (2.14) we conclude (4.6) and hence the
equivalence of two formulations: (2.22) and (4.5).

Moreover, in analogy with (2.17) and within a constant independent of state variables (ρ,P)
we can rewrite Toupin’s energy functional (4.4) as

ET [ρ,P, ζ] = U [ρ,P] +

∫
V

[P · ∇(ζ + ξe) + ρ(ζ + ξe)]− εc
2

∫
V
|∇ζ|2 −

∫
ΓR

1

2
kζ2, (4.7)

and claim the state variables (ρ,P) and self electric field are determined by the min-max problem

min
(ρ,P)∈S

max
ζ∈W0

ET [ρ,P, ζ], W0 := {ζ ∈W : ζ = 0 on ΓD} (cf., (2.6)). (4.8)

17This energy functional is sometimes referred to as “enthalpy” of the system in the literature. The implication of
this terminology is, however, substantially different from what enthalpy means in the standard setting of thermody-
namics (Kittel and Kroemer 1980, p. 68, p. 246, p. 262). In particular, the equilibrium state in the setting of Kittel
and Kroemer (1980) is always determined by minimizing a proper energy functional instead of a min-max problem.
The proper energy functional, i.e., one of the internal energy, Helmholtz free energy, enthalpy, Gibbs free energy, is
determined by the constraints on the system: internal energy for closed and isolated systems, Helholtz free energy
for closed systems at constant temperature, enthalpy for closed systems at constant pressure, and Gibbs free energy
for systems at constant temperature and constant chemical potential.
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To see this, we first notice that the Euler-Lagrange equation for a maximizer ξ of the inner maxi-
mization problem in (4.8) is precisely (2.8). Therefore, by (2.8) and the last of (2.15) with ζ being
replaced by ξ we find that (cf., (2.17))

F [ρ,P] = max
ζ∈W0

ET [ρ,P, ζ].

The Toupin’s energy functional depends on its state variables locally and implies a standard
finite element method to determine both the charge density, polarization and field simultaneously
(Yang and Dayal, 2011). However, it is unclear in this formulation how to analyze the stability of a
stationary state (ρ,P) and field −∇ξt (or −∇ξ) since it is a saddle point of the energy functional,
as remarked by Brown (1966, p. 78) and Ericksen (2007). Also, numerical schemes based on a
minimization principle are typically more robust than schemes based on min-max principle. It is
therefore of interest to reformulate the problem as a local minimization problem, which is proposed
by Ericksen (2007) 18.

4.3 Ericksen’s formulation

In the absence of charges and boundary devices, i.e., ρ = ρe ≡ 0 on V = IR3, Ericksen (2007)
proposed the following energy functional

EE [ρ,P,A] = U [ρ,P] +
1

2εc

∫
IR3
|∇ ×A−P|2 −

∫
IR3

(∇×A−P) · ∇ξe, (4.9)

such that the the vector potential and polarization are determined by minimizing the energy func-
tional:

min
(ρ,P)∈S∩{ρ=0}

min{EE [ρ,P,A] : A ∈ A}, (4.10)

where A denotes the admissible space for the vector potential A which may be assumed as A =
{A :

∫
IR3 |∇ ×A|2 < +∞}. Again, the above variation problem is equivalent to (2.22) since

F [ρ,P]− min
A∈A

EE [ρ,P,A] = a constant independent of P (ρ ≡ 0).

To see this, we denote by A∗ ∈ A the minimizing vector potential. By the first variational calcu-
lations we find that A∗ satisfies∫

IR3
[
1

εc
(∇×A∗ −P)−∇ξe] · ∇ ×A1 = 0 ∀A1 ∈ A. (4.11)

Let

g(x) =
1

εc
(∇×A∗ −P)−∇ξe =

{
1
εc
∇×A∗ −∇ξe on IR3 \ Ω,

1
εc

(∇×A∗ −P)−∇ξe on Ω.
(4.12)

Then (4.11) can be rewritten as∫
IR3

g · ∇ ×A1 = 0 ∀A1 ∈ A,

18This formulation is to some extent parallel to the Ginzburg-Landau theory in the context of superconductivity.
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which implies that g : IR3 → IR3 is necessarily the gradient of a scalar field. We denote this
gradient field by −∇ξt, let ξ = ξt − ξe, and by (4.12) obtain

∇×A∗ = −εc∇ξ + PχΩ on IR3. (4.13)

Since div[∇×A∗] = 0 on IR3, we identify −∇ξ as the self electric field induced by the polarization
PχΩ (cf., (2.8) or (4.2)) and the field g = −∇ξt as the total electric field. Replacing ∇×A in (4.9)
by the right hand side of (4.13), we find that

min
A∈A

EE [ρ,P,A] = U [ρ,P] +
εc
2

∫
IR3
|∇ξ|2 +

∫
Ω

P · ∇ξe,

which is identical with (2.17) since V = IR3 and k = 0, also see (4.1) with ρ ≡ 0.

5 Transformation of free energy for different comparison media

Before proceeding to detailed derivations, a few remarks are in order here regarding the general form
of internal energy density Φ = Φ(ρ,P,∇ρ,∇P). On one hand the general dependence of internal
energy on ρ, ∇ρ, ∇P is convenient; it allows us to study different media including conductors,
dielectrics and ferroelectrics in a unified framework. On the other hand, it unnecessarily complicates
calculations if one’s interest is mainly on a body with polarization P being the only state variable.
Further, the dependence of internal energy on ∇P, such as the first term in (3.52), referred to
as the exchange term, is phenomenological. The effects of this term include favoring long-range
ordering of polarization, penalizing domain walls, giving rise to an intrinsic lengthscale of domain
patterns and domain walls, etc.

With the above mentioned, we subsequently focus on dielectric media and, with an abuse of
notation, assume that the internal energy density function is simply given by

Φ = Φ(x,P), (5.14)

where the ∇P-dependence is neglected. In this section,we will use εc different from the permittivity
of the ambient medium in our definition of free energy (cf., (2.14)). It is therefore necessary to
extend spatial definition of Φ to the entire domain V and assume the convention that 1/0 =
+∞, 0 · ∞ = 0 for ease of notation. Again we sometimes drop the x (position)-dependence of Φ
for brevity and the stated properties for Φ such as convexity, invertibility, etc apply pointwisely to
every x ∈ V unless otherwise stated.

As a dielectric medium, vacuum plays a special role in the sense that it cannot be polarized
according to the conventional definition, i.e., P = Dt − ε0Et ≡ 0. The physical reason of singling
out vacuum as the ambient “comparison” medium is self-evident. It is also convenient since systems
of interest are usually in air with permittivity negligibly different from that of vacuum. Then the
standard definition of polarization P = Dt − ε0Et enables us to focus on the polarizable body, in
spite of complications arising from the nonlocal electrostatic field in the ambient medium.

So far the εc in the free energy (2.14) is chosen as that of the ambient medium 19, which is tacitly
understood as vacuum, i.e., εc = ε0 = 8.854× 10−12F/m. We denote the functional dependence of
the free energy on (εc,P,Φ) by

F̂ = F̂ [Π], Π = (εc,P,Φ),

19In this case, the internal energy density function at x ∈ V \Ω is defined as Φ(x,P) = +∞ if P 6= 0; = 0 if P = 0.
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where the dependence of free energy on other parameters such as ρ, ρe,Pe,Φ, k, ξb, σ0, etc, is omitted
since they will remain unchanged in the following calculations.

We now consider a dielectric body immersed in a linear dielectric medium with permittivity
ε1, e.g., water. If vacuum is again used as the comparison medium, our system shall include the
dielectric body Ω and ambient medium V \ Ω — the very scenario one would like to avoid by
introducing the concept of polarization. In analogy with a dielectric body in air (or vacuum), we
expect that it would be more convenient to use the actual ambient medium of ε1 as the comparison
medium in our energy formulation. Unquestionably, the physics of the body and ambient medium
shall not depend on the choice of comparison medium. We are therefore motivated to seek a general
transformation of Π→ Π′ = T (Π) such that the free energy of the system remains invariant:

F̂ [T (Π)] = F̂ [Π]. (5.15)

To find the transformation, we require that the total electric field Et = −∇ξt remain invariant
and satisfy the same equations as (2.5) with the permittivity εc = ε0 being replaced by εc = ε1.
This determines

εc = ε0 → εc = ε1, P→ P′ = P + (ε0 − ε1)Et, (5.16)

which also guarantees the invariance of electric displacement and potential energy P [ρ,P] (cf.,
(2.11)). In addition, we require the total field energy is again given by (2.12) but with ε0 replaced
by ε1:

E t[ρ,P]→ E t′ [ρ,P′] =
ε1
2

∫
V
|∇ξt|2.

Finally, the invariance of free energy requires that

U [ρ,P]→ U ′[ρ,P′] =

∫
V

Φ(P) +
ε0 − ε1

2

∫
V
|∇ξt|2. (5.17)

Recall that by the constitutive law, i.e., the last of (3.44) and (3.45), and (5.16) we have

P′ = P + (ε0 − ε1)Ê(P) on V. (5.18)

Assume the above mapping P 7→ P′ is invertible and denote by the inverse mapping by P′ 7→ P =
q(P′). Then equation (5.17) determines the transformation of the internal energy density function
as

Φ(P)→ Φ′(P′) = Φ(q(P′)) +
ε0 − ε1

2
|Ê(q(P′))|2 on V. (5.19)

We henceforth obtain the transformation

T (Π) = Π′, Π′ = (ε1,P
′,Φ′) (defined by (5.16) and (5.19)), (5.20)

which may be regarded as a symmetry group of the free energy functional with one continuous
parameter ε1. From this viewpoint, it makes more physical sense to directly postulate the existence
of an εc-dependent internal energy density Φ̃(P, εc), e.g., Φ̃(P, εc) = 1

2P · (ε− εcI)−1P for a linear
dielectric medium with permittivity tensor ε 20. In particular, we may choose εc = 0. Then at the
absence of Robin boundary (i.e., ΓR = ∅), by (2.14) the free energy is given by

F̃ [P] =

∫
V

Φ̃(P, 0) +

∫
∂V
ξbn · [P + Pe], (5.21)

20The internal energy function Φ̃(P, εc) shall be such that the free energy (total electric field and electric dis-
placement) remain invariant with respect to transformations (5.20). It will be interesting to have a simple explicit
characterization of such energy functions without assuming the invertibility of the mapping in (5.18).
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which appears to be exceptionally simple. The trade-off is that, by (2.5), the polarization now has
to satisfy a differential constraint

div(P + Pe) = ρe on V. (5.22)

In spite of the above differential constraint, we anticipate that the free energy functional (5.21) will
be convenient for analysis of ferroelectric media for which P 7→ Φ̃(P, 0) is nonconvex.

On the other hand, if the extended system consist of an inhomogeneous inclusion Ω immersed
in an ambient medium of isotropic linear permittivity ε1 on V \ Ω, by sending εc → ε1 we obtain
that the free energy is given by

F̃ [P] =

∫
Ω

Φ(P, ε1) +

∫
V

ε1
2
|∇ξt|2 +

∫
ΓR

1

2
k(ξt)2 +

∫
ΓD

ξbn · [−ε1∇ξt + P + Pe],

where we necessarily require the matrix V \ Ω be unpolarizable, i.e., P = 0 on V \ Ω to keep the
free energy finite. If we further increase the comparison medium such that εc > ε1, then by (2.21)
it can be shown that a stationary polarization (i.e., polarization determined by (2.5) and (2.32))
cannot be a local minimizer of F̃ [P] in the admissible space P (cf., (2.31)). This of course does
not mean our free energy formula or the principle of minimum free energy fails; the paradox arises
from that P is now no longer a “physical” admissible space for the state variable.

We remark that the above symmetry of free energy functional with respect to the comparison
medium (cf. (5.20)) is not entirely new. It has been briefly mentioned in Landau et al (1995, §12)
and tacitly used in many calculations concerning electrostatic forces on a subbody immersed in
a fluid, etc. Moreover, general transformations for which the ambient or background medium is
non-uniform can be similarly found. In this case, the total field energy is given by

∫
V
εc(x)

2 |∇ξ
t|

which can be identified as
∫
V

1
2Et ·Dt for a linear dielectric medium upon choosing εc(x) being the

actual permittivity in V .

6 A variational formulation without introducing polarization

As mentioned above, the second of the Euler-Lagrange equations (2.32) associated with the principle
of minimum free energy can be interpreted as a constitutive relation between the (local) polarization
and total electric field if the internal energy density Φ = Φ(P) is independent of ∇P:

E = −∇ξt = Ê(P) := DPΦ(P). (6.1)

Suppose that the above mapping P 7→ Ê(P) is invertible 21,22, and denote the inverse mapping by
P̂ : IR3 → IR3, i.e.,

P̂(E) = P if E = Ê(P) ∀P ∈ IR3. (6.2)

Inserting the above constitutive equation into (2.5) we obtain the following boundary problem for
determining the total field −∇ξt:

div[−εc∇ξt + P̂(−∇ξt)χΩ + Pe] = ρe on V,

ξt − ξb = 0 on ΓD,

k(ξt − ξb)− n · [−εc∇ξt + P̂(−∇ξt)χΩ + Pe]− σ0 = 0 on ΓR.

(6.3)

21This assumption is for the sake of proving the equivalence of different variational formulations. It would be
unnecessary if the relations between different formulations are of no interest.

22A somewhat natural but more restrictive assumption is to require P 7→ Φ(P) is strictly convex on V , which is
satisfied by linear dielectric media. This assumption eliminates the possibility of microstructuring between multiple
equilibria.
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In principle we may solve the above boundary value problem for −∇ξt, and then by the constitutive
law determine polarization as well as other quantities of interest. From this viewpoint, the key in
analyzing electrostatics of continuum bodies still hinges on solving (6.3) — the Maxwell’s equations
with a general constitutive law.

It is always possible to identify an energy functional with its Euler-Lagrange equation equivalent
to the boundary value problem (6.3) without introducing the concept of polarization at all. To see
this, we consider an energy functional

H[ζ] =

∫
V

[W (x,−∇ζ)− ρeζ −Pe · ∇ζ] +

∫
ΓR

[ 1

2
kζ2 − ζ(kξb + σ0)

]
. (6.4)

where W (x, · ) : IR3 → IR is an energy density as a function of total electric field, and ρe,Pe, k, ξb, σ0

are defined as in §2.1. Below the x-dependence of W is sometimes dropped for brevity. Denote by

DEW (E) =
∂W (E)

∂E
.

Further, in terms of a scalar potential ζ we consider the variational problem:

min
ζ∈Wξb

H[ζ], Wξb := {ζ ∈W : ζ = ξb on ΓD}. (6.5)

Standard first variation calculations show that the Euler-Lagrange equation associated with (6.5)
is given by 

div[DEW (−∇ζ) + Pe] = ρe on V,

ζ − ξb = 0 on ΓD,

−[DEW (−∇ζ) + Pe] · n + k(ζ − ξb)− σ0 = 0 on ΓR.

(6.6)

Comparing (6.6) with (6.3), we see that the two boundary value problems will be exactly the same
if for any E ∈ IR3,

DEW (E) = εcE + P̂(E)χΩ on V.

Let Φ∗ : IR3 → IR be such that DEΦ∗ = P̂(E) for any E ∈ IR3 23. Then if the energy density
function W (E) is chosen as

W (E) =
εc
2
|E|2 + Φ∗(E)χΩ on V, (6.8)

comparing (6.6) with (6.3) we find the variational principle (6.5) imply the same Euler-Lagrange
equations as (2.22), and hence the same electric fields, electric displacements, etc if the solution
to (6.3) is unique (within a constant).

23By (6.1) we have ∂Êi
∂Pj

= ∂2Φ
∂Pi∂Pj

, and hence by (6.2), [ ∂P̂i
∂Ej

] =
[

∂2Φ
∂Pi∂Pj

(P̂(E))
]−1

. That is, ∂P̂i
∂Ej

=
∂P̂j

∂Ei
. Therefore,

there exists a scalar function E 7→ Φ∗(E) such that DEΦ∗(E) = P̂(E). Clearly, there is an arbitrary integration
constant in Φ∗(E), which is subsequently determined by requiring that Φ(P̂(0)) + Φ∗(0) = 0. Then we have that if
(6.1) (or, equivalently, (6.2)) is invertible,

Φ(P) + Φ∗(E) = P ·E (6.7)

since ∂
∂Pi

[
Φ(P) + Φ∗(Ê(P))−P · Ê(P)

]
= Ei + Pj

∂Êj

∂Pi
− Ei − Pj ∂Êj

∂Pi
= 0.
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Two remarks are in order regarding the non-uniqueness of variational principles corresponding
to an equivalent set of field equations and boundary conditions. First, the free energy and the
principle of minimum free energy, being thermodynamic concepts, clearly cannot be inferred from
the field equations and constitutive laws (1.1). This is of critical importance in analyzing quasi-
static evolutions, e.g., phase transitions, of the system since, as one will see shortly (cf., (6.9)),
F̃ being the free energy implies opposite force on an internal variable of the system to the force
implied by H being the free energy 24. Further, one may be motivated to ponder on the microscopic
foundation of the physical concept of “polarization” and whether it is needed at all for electrostatics
at a fundamental level. There appears to be no simple uncontentious answer to this question.
At the practical level, the concept of polarization is obviously convenient for many physical and
mathematical reasonings, though it gives rise to quite a bit confusions as well from its ambient-
medium-dependent nonlocal characteristics.

Further, when the system or the extended system are in equilibrium (i.e., (6.6) is satisfied), the
two energies are related by

F̃ [P] +H[ξt] = 0, (6.9)

which may be regarded as a generalization of the underlying identity enabling us to estimate the
effective properties of composites by well-known Hashin-Shtrikman variational principle. To see
this, we notice that the bulk integrals in the sum of (6.4) and (2.14) are given by∫

V

[
W (−∇ξt)− ρeξt −Pe · ∇ξt + χΩΦ(P) +

εc
2
|∇ξt|2

]
=

∫
V

[
− ρeξt −Pe · ∇ξt −P · ∇ξt + εc|∇ξt|2

]
(cf., (6.7), (6.8))

= −
∫
∂V
ξtn · (−εc∇ξt + Pe + P) (cf., the first of (2.15) with ζ = ξt)

=

∫
ΓR

ξt(−kξt + kξb + σ0)−
∫

ΓD

ξtn · (−εc∇ξt + Pe + P),

which precisely cancels the the surface integrals in the sum of (6.4) and (2.14).
For clarity we summarize below.

Theorem 1 Let V , ΓD,ΓR, ξt, ρe,Pe, k, σ0, ξb be defined as in §2.1. Consider two functionals
F̃ ,H given by

F̃ [P] =

∫
V

[
Φ(P)χΩ +

εc
2
|∇ξt|2

]
+

∫
ΓR

1

2
k(ξt)2 +

∫
ΓD

ξbn · [−εc∇ξt + P + Pe],

H[ζ] =

∫
V

[W (−∇ζ)− ρeζ −Pe · ∇ζ] +

∫
ΓR

[ 1

2
kζ2 − ζ(kξb + σ0)

]
,

respectively. If for any x ∈ Ω the mapping defined by (6.1) is invertible, the function W is given by
(6.8), and the pair (P, ξt) satisfy P = χΩP̂(−∇ξt) and (6.3) (i.e., are stationary points of F̃ and
H, respectively), then the identity (6.9) holds. If, in addition, P 7→ Φ(P) is strictly convex on V ,
then both stationary points (P, ξt) are minimizers and henceforth,

min
P∈P

F̃ [P] + min
ζ∈Wξb

H[ζ] = 0. (6.10)

24In the analogous formulations of elasticity, H[ζ], instead of F̃ [P], is the free energy, where ζ is interpreted as
displacement and P as eigenstress.
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When specialized to affine Dirichlet boundary conditions, the above theorem establishes the
relation between the well-known Hashin-Shtrikman variational principle and the effective properties
of composites.

Theorem 2 Suppose that V is open bounded, ρe = Pe = 0, ΓD = ∂V , ξb = −E0 · x on ∂V for
some E0 ∈ IR3, for any x ∈ Ω the mapping defined by (6.1) is invertible, and that P, ξt satisfy
P = P̂(−∇ξt) on V and (6.3). Let P̄ =

∫
−V P, ξ = ξt + E0 · x,

W e(E0) :=

∫
−
V
W (−∇ξt), Φe(P̄) :=

∫
−
V

[
Φ(P) +

εc
2
|∇ξ|2

]
, (6.11)

where
∫
−V denotes the average value of the integrand on V . Then DEW

e(E0) = εcE0 + P̄, and

Φe(P̄)− εc
2
|E0|2 +W e(E0) = P̄ ·E0. (6.12)

If, in addition, P 7→ Φ(P) is convex, then

Φe(P̄) = min∫
−V P=P̄

∫
−
V

[
Φ(P) +

εc
2
|∇ξ|2

]
and

W e(E0) =
εc
2
|E0|2 + sup

P̄∈IR3

{P̄ ·E0 − Φe(P̄)}.

We remark that by (6.3), ξ = ξt + E0 · x satisfies{
div[−εc∇ξ + P] = 0 on V,

ξ = 0 on ∂V,

and may be interpreted as the “microscopic” electrostatic potential induced by polarization P.

Proof: Without loss of generality, assume that the volume of domain V is one. Consider a
perturbation of the boundary condition ξb → ξ′b = −(E0 + δa) ·x (δ << 1), and denote by (Pδ, ξ

t
δ)

the pair satisfying Pδ = P̂(−∇ξtδ) on V and (6.6). Then by definition,

W e(E0 + δa)−W e(E0) = −
∫
V
DEW (−∇ξt) · ∇(ξtδ − ξt) + o(δ).

Since DEW (−∇ξt) = −εc∇ξt + P is divergence free, by the divergence theorem we have

−
∫
V
DEW (−∇ξt) · ∇(ξtδ − ξt) = −

∫
∂V

(ξtδ − ξt)n · (−εc∇ξt + P)

= δa ·
∫
∂V

xn · (−εc∇ξt + P) = δa ·
∫
V

(−εc∇ξt + P).

Therefore,

DEW
e(E0) =

∫
V

(−εc∇ξt + P), i.e., P̄ =

∫
V

P = DEW
e(E0)− εcE0. (6.13)

In addition, the boundary integral in F̃ [P] is given by∫
∂V
−(E0 · x)n · (−εc∇ξt + P) = −E0 ·DEW

e(E0) = −εc|E0|2 −E0 · P̄. (6.14)

Equation (6.12) follows by inserting (6.11), (6.13) and (6.14) into (6.9).
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The above theorem shows that the Hashin-Shtrikman type estimates on energies can be similarly
derived for inhomogeneous media of any microstructure; an underlying homogenization theory is
not needed for such estimates.

7 Applications

7.1 Maxwell stress

In continuum mechanics, it is often convenient to express balance laws as pointwise differential equa-
tions. Also, non-smooth distributions of charge density and polarization are frequently encountered
in a continuum medium, e.g., a conductor and a heterogeneous dielectric medium with sharp inter-
faces. We are therefore motivated to seek a local differential form of the force formula (2.26), i.e.,
a tensor field T : V → IR3×3, such that 25

divT = b := −ρt∇ξt − (∇∇ξt)Pt on V, (7.1)

where the vector field b : V → IR3 can be interpreted as a body force due to electrostatic interac-
tions, and div operates on the row vectors of T. By the divergence theory, the force on a subdomain
P ⊂ V can then be rewritten as

f =

∫
P

div T =

∫
∂P

Tn, (7.2)

where the last equality requires the tensor field T be continuous up to ∂P.
We now solve (7.1) for T. First, we notice that solutions are not unique, even if a boundary

condition is supplemented. If T is a solution to (7.1), then T + T0 is also a solution for any tensor
field T0 : V → IR3×3 satisfying {

divT0 = 0 on V,

T0n = 0 on ∂V.

To find a special solution to (7.1), for simplicity we assume (ρt,Pt) are smooth on V . Then by
(2.5) we find that for any x ∈ V ,{

div[(−∇ξt)⊗ (−εc∇ξt + Pt)] = (∇∇ξt)(εc∇ξt −Pt)− ρt∇ξt,
∇( εc2 |∇ξ

t|2) = εc∇∇ξt(∇ξt).
(7.3)

Recall that Et = −∇ξt is the total electric field, Dt = εcE
t + Pt is the total electric displacement

and I is the identity matrix. We define the Maxwell stress as

TM = Et ⊗Dt − εc
2
|Et|2I. (7.4)

By (7.3), we have

div TM = −ρt∇ξt − (∇∇ξt)Pt = b on V.

We remark that for non-smooth (ρt,Pt) such that ∇∇ξt is unbounded, the physical meaning
of Maxwell stress and the right hand side of (7.1) shall be interpreted according to the right hand

25It is more natural to study Maxwell stress on the entire domain V instead of being restricted to Ω. Clearly, the
force equation (2.26) applies to external distribution of charges and polarizations as well.
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side of (7.2) which has less stringent requirement on the differentiability of ξt. In particular, we can
conclude that the Maxwell stress and hence the body force on any subdomain P ⊂ V is well-defined
for (ρt,Pt) such that ξt is Lipshitz continuous (i.e., W 1,∞), e.g., (ρt,Pt) is piecewise smooth and
bounded on V .

The reader may has noticed that the permittivity used in (7.4) is that of the ambient medium
εc instead of the local permittivity in some derivations, e.g., Stratton (1941, p. 137). A heuristic
explanation is as follows: the perturbation (2.27) is disruptive for displacement; the gap between
the perturbed subbody Pδ and the rest of body Ω \ P has zero polarization, i.e., filled with the
“unpolarizable” ambient medium with zero internal energy whereas in the derivation of Stratton
(1941, p. 137) the perturbation is required to be continuous in terms of displacement. Moreover, in
regard of the freedom in choosing the comparison or background medium (cf. § 5), the body force
(7.1) arising from “electrostatic interactions” depends on the background medium or the definition
of total field energy. Therefore, the formulation of mechanical balance laws and boundary conditions
requires particular cautions but will not be addressed here; the interested reader is referred to Pao
(1978) and reference therein for elaborated discussions.

7.2 Forces on a point charge and dipole and boundary effects

In applications of field-controlled self-assembly, separation and concentration, electric or magnetic
suspensions, electric or magnetic tweezers, etc, it is of interest to calculate the force on a point
charge and dipole in the presence of a boundary device. In addition to a point charge q or point
dipole p at x0 ∈ Ω (without loss of generality, assume x0 is the origin), we assume there are smooth
charge density ρrg and polarization Prg on V . That is, the total charge and polarization is given
by

(ρt,Pt) = (ρrg,Prg) + (q, 0)δ0 or (ρt,Pt) = (ρrg,Prg) + (0,p)δ0,

where δ0 is the Dirac function at the origin. We first consider a point change. Clearly, the total
field is given by

Et = Erg + Ept, Ept = −∇ξpt =
1

4πεc

qer
r2
,

where er = x/|x| is the radian unit vector,

ξpt =
1

4πεc

q

r

is the electrostatic potential of the point charge q in IR3, and the regular field Erg = −∇ξrg is
smooth and bounded on a neighborhood of the origin, satisfying

div[−εc∇ξrg + Prg] = ρrg on V,

ξrg + ξpt − ξb = 0 on ΓD,

k(ξrg + ξpt − ξb)− n · [−εc∇(ξrg + ξpt) + Prg]− σ0 = 0 on ΓR.

(7.5)

As usual we denote by

Drg = εcE
rg + Prg, ∇ ·Drg = ρrg. (7.6)

The force on the point charge may be calculated as follows. First, let ρε be a smooth sequence
of smeared point charges. Let Bη be a fixed ball centered at the origin of radius η. As ε→ 0, the
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total field on ∂Bη converges to the limit Et uniformly. By (7.2) the force on the ball Bη is given by

fη =

∫
∂Bη

[
(Erg + Ept)⊗ (Drg + εcE

pt)− εc|Erg + Ept|2

2
I
]
er.

Expanding the integrand on the right hand side of the above equation we obtain

fη =

∫
∂Bη

[
Erg(Drg · er) + Ept(Drg · er) + εcE

rg(Ept · er) + εcE
pt(Ept · er)

−εc(Erg ·Ept)er −
εc
2

(|Erg|2 + |Ept|2)er

]
.

Since Erg and Drg are smooth and bounded on ∂Bη, we estimate the right hand side of the above
equation term by term as follows:∫

∂Bη

Erg(Drg · er) = O(η2),∫
∂Bη

Ept(Drg · er) =

∫
∂Bη

Ept[er ·Drg + rer · (∇Drg)er + · · · ] =
1

3εc
qDrg +O(η2),

εc

∫
∂Bη

Erg(Ept · er) =
1

4π

∫
∂Bη

Erg q

r2
= qErg +O(η2),

εc

∫
∂Bη

Ept(Ept · er) =
1

4π

∫
∂Bη

Ept q

r2
= 0,

εc

∫
∂Bη

er(E
pt ·Erg) =

1

3
qErg +O(η2),∫

∂Bη

εc
2

(|Erg|2 + |Ept|2)er = O(η2),

where all fields and their derivatives on the right hand sides of the above equations are evaluated
at the origin. In addition, we have made use of the following identities:∫

∂Bη

er ⊗ er =
4πη2

3
I,

∫
∂Bη

er = 0,

∫
∂Bη

er ⊗ er ⊗ er = 0.

Therefore, upon sending η → 0, by (7.6) we conclude that the force on the point charge and point
dipole at the origin is given by

f = qErg +
1

3εc
qPrg

∣∣∣
x=0

. (7.7)

By regarding a point dipole as the limit of two opposite equal charge q separated by p/q and
sending q → +∞, by (7.7) we find the force on a point dipole p is given by

f = p · ∇Erg +
1

3εc
p · ∇Prg

∣∣∣
x=0

. (7.8)

We remark that the dependence of the force on the local polarization may appear to be somewhat
strange. However, it is consistent with an intuitive expectation. That is, by symmetry the force
experienced by a point charge should not change if an infinitesimal ball around the point charge
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of uniform polarization is removed. Indeed, in this process, the change of polarization and electric
field is given by

Erg(0)→ Erg(0) +
1

3εc
P(0), P(0)→ 0.

and henceforth, the force remains unchanged according to (7.7).
Further, from the definition of regular field (7.9), it is conceptually appealing to decompose it

into two parts:

−∇ξrg = −∇ξe −∇ξim,

where the “external field” is determined by
div[−εc∇ξe + Prg] = ρrg on V,

ξe − ξb = 0 on ΓD,

k(ξe − ξb)− n · [−εc∇ξe + Prg]− σ0 = 0 on ΓR,

(7.9)

and the “image field” is determined by 26
−εc∆ξim = 0 on V,

ξim + ξpt = 0 on ΓD,

k(ξim + ξpt) + εcn · ∇(ξim + ξpt) = 0 on ΓR.

(7.10)

In the absence of regular external sources (i.e., Prg = ρrg = ξb = σ0 = 0), the regular field consists
only of image field and the force formula (7.7) characterizes the “self-interaction” of the point
charge or dipole mediated by the boundary.

As an example, we assume V is the half-space {z > 0} and consider a point charge q at (0, 0, h).
Assume ΓR = {(x, y, z) : z = 0} and Prg = ρrg = ξb = σ0 = 0. Clearly, the external field −∇ξe = 0.
By (7.7) we have

f = − q2

4πεc(2h)2
ez if k → +∞ (Dirichlet);

q2

4πεc(2h)2
ez if k = 0 (Neumann).

Note that the above force is independent of the sign of the charge, attractive for Dirichlet boundary
condition, repulsive for Neumann boundary condition, and scales as 1/h2 27. Moreover, if the point
charge is replaced by a point dipole p at h, the force on the dipole is clearly given by

f = − |p|2

4πεc(2h)2
ez if k → +∞ (Dirichlet);

|p|2

4πεc(2h)2
ez if k = 0 (Neumann),

which is independent of the direction of the dipole p.

7.3 Effective properties of nonlinear dielectric composites

In the study of heterogeneous media, it is frequently necessary to coarse-grain the original problem
and derive the “effective” properties of the medium since fine-scale oscillations are of little interest

26In the context of linear elasticity this concept was introduced by Eshelby (1957, 1961).
27Repulsion between a charge and a Neumann boundary is really not a surprise if one thinks of the analogous

interaction between a superconductor and a magnet.
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Figure 3: A two-phase composite: (a) the overall composite body; (b) a representive volume
element of a rectangular unit cell with an inclusion.

from a macroscopic viewpoint. In this section we consider, as illustrated in Fig. 3, a model of
two-phase dielectric composites with a periodic array of identical particles embedded in a linear
isotropic matrix of permittivity εc. Let Y be a unit cell or a representive volume element associated
with the periodicity, Ω ⊂ Y be the domain occupied by the particle, and θ = |Ω|/|Y | be the
volume fraction of the particles. The dielectric behavior of the particle is prescribed by a smooth,
nonnegative, (not necessarily convex) internal energy density function Φ : IR3 → IR. We assume
that the overall composite body V is much larger than the particle (i.e., scale-separation). Then
the macroscopic coarse-grained behavior of the composite may be well described by an effective
internal energy density:

Φe(P̄) := min
P∈P(P̄)

{
θ

∫
−

Ω
Φ(P) +

εc
2

∫
−
Y
|∇ξ|2

}
, (7.11)

where P̄ ∈ IR3 is the average polarization on a unit cell Y ,

P(P̄) := {P :

∫
−
Y

P = P̄, P = 0 on Y \ Ω}, (7.12)

and the microscopic electric field −∇ξ is determined by{
div[−εc∇ξ + PχΩ] = 0 on Y,

periodic boundary conditions on ∂Y.
(7.13)

The difficulty in calculating the effective internal energy density arises from the last term on
the right hand side of (7.11) for its nonlocal dependence on the state variable P. However, it is
well known that equation (7.13) admits a closed-form solution in the dilute limit (i.e., Y = IR3)
for a uniformly polarized ellipsoidal Ω. Based on this solution effective properties of dielectric
composites has been estimated for composites in the dilute limit (Maxwell, 1873; Milton, 2002,
ch. 10), and for finite volume fraction by self-consistent scheme or Mori-Tanaka theory (Benveniste,
1987; Dunn, 1995; Milton, 2002, § 10.5). A second closed-form solution was recently found for
uniformly polarized periodic E-inclusions, i.e., Ω is such that the overdetermined problem

∆u = θ − χΩ on Y,

∇∇u = −(1− θ)Q on Ω,

periodic boundary conditions on ∂Y,

(7.14)
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admits a solution, where the 3 × 3 shape matrix Q is symmetric, nonnegative and Tr(Q) = 1. In
the dilute limit and in the context of ferromagnetics, the shape matrix Q can be identified as the
demagnetization matrix of an ellipsoid. Typical periodic E-inclusions for various shape matrix,
volume fraction and unit cell have been shown in Liu et al. (2007; 2008).

By (7.14) one immediately sees that if P = P̄/θ is uniform on Ω, a solution to (7.13) is given
by

−∇ξ =
1

θεc
∇(P̄ · ∇u),

and henceforth,

εc
2

∫
−
Y
|∇ξ|2 =

θ

2

∫
−

Ω
P · ∇ξ =

1− θ
2θεc

P̄ ·QP̄.

Let Φ∗∗ : IR3 → IR is the convex envelope of Φ:

Φ∗∗(P) = sup{ϕ(P) : ϕ ≤ Φ and ϕ is convex},

and

Φe
L(P̄) := θΦ∗∗(P̄/θ) +

1− θ
2θεc

P̄ ·QP̄, (7.15)

It can be shown that for periodic E-inclusions with shape matrix Q and volume fraction θ, the
effective internal energy density Φe(P̄) is precisely given by Φe

L(P̄). A proof of this statement may
be constructed following DeSimone and James (2002, Theorem 4.1; Lemma A.1) and Theorem 2.35
in Dacorogna (2008, p. 52).

Moreover, it is worthwhile noticing a microstructure-independent property of (7.13). Consider
three uniform polarizations on an arbitrary domain Ω ⊂ Y of volume fraction θ: P∗i = p0/θeiχΩ

(i = 1, 2, 3) for some p0 ∈ IR, where {e1, e2, e3} form an orthonormal basis of IR3. Let ξ∗i be the
corresponding solutions to (7.13). Then by Fourier analysis or divergence theorem, we find that

3∑
i=1

εc
2

∫
−
Y
|∇ξ∗i |2 =

(1− θ)p2
0

2θεc
.

Then, by (7.11) the above equation implies an upper bound on a summation of effective internal
density:

3∑
i=1

Φe(p0ei) ≤
3∑
i=1

θΦ(p0/θei) +
(1− θ)p2

0

2θεc
. (7.16)

We remark that the above microstructure-independent bound implies the familiar Hashin-Shtrikman
bound if Φ is quadratic and convex. If Φ(P) = α|P|β for some β ≥ 1 and α > 0 and the effective
internal energy is assumed to be “isotropic”: Φe(P) = ϕe(|P|), then by (7.16) we have

ϕe(p0) ≤ αθ1−β|p0|β +
(1− θ)p2

0

6θεc
∀ p0 ∈ IR, (7.17)

which is an optimal bound since the equality holds for periodic E-inclusions with Q = I/3, see (7.15).
We remark that a lower bound for ϕe can be derived by considering inhomogeneous background
comparison medium or the dual variational formulation.
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