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We calculate the effective conductivity of a two-phase composite with a periodic array of
inhomogeneities. The shape of the inhomogeneities is assumed to be a periodic E-inclusion. The
effective conductivity is expressed in terms of the volume fraction of the inhomogeneities and a
matrix, which characterizes the shape of the periodic E-inclusion. This solution is rigorous,
closed-form, and applicable to situations that the conductivity of the inhomogeneities is singular,
i.e., zero or infinite. Further, when the periodic E-inclusion degenerates to a periodic array of slits
with vanishing volume fraction, we give explicit solutions to local fields and effective conductivity
of the composite with singular inhomogeneities. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3110026�

I. INTRODUCTION

High-contrast composites have wide industrial applica-
tions. Examples include metal and glass foams, fibrous metal
and glass materials, fiber-reinforced materials, and fractured
porous media. Once the notion of effective properties of
composites or heterogeneous media is established, we are
faced with the critical problem of finding the effective prop-
erties of a given composite and, if possible, relating the ef-
fective properties with the microstructure of the composite.
However this is difficult even for composites with simple
microstructures, for example, a two-phase composite with a
periodic array of inhomogeneous spheres. In this and similar
cases, heuristic methods such as the effective medium theory
�Ref. 1 and references therein� and the self-consistent
method2 can give us closed-form formulas of the effective
properties. These approximate formulas are in good agree-
ment with experiments when the contrast between the two
phases is small but unsatisfactory when the contrast of the
constituent phases becomes large. If we idealize the physical
properties of the inhomogeneities to be infinite or zero, many
of the approximate formulas even yield unphysical results.
Further, rigorous bounds such as the Hashin–Shtrikman
bounds3 are not of much use since they are far apart from
each other for high-contrast composites. So it is important
for both theory and application to have a reasonable estimate
of the effective properties of high-contrast composites. This
is the purpose of this paper.

Theoretical results are available for a small number of
particular cases in the literature. Keller4 considered a com-
posite of a cubic array of perfectly conducting spheres em-
bedded in a normal conducting medium and obtained an
asymptotic formula for the effective conductivity when the
gaps between nearby spheres are small. Dykne5 showed that
a two-phase system of insulating and conducting materials
could undergo a dielectrics-conductor transition at certain
critical concentration. For random high-contrast composites,
a number of authors6,7 used a discrete network to model a
high-contrast composite based on physical consideration.

Kozlov8 and Berlyand and Kolpakov9 showed that the dis-
crete network is a sound model of the original continuum
problem. From these works, we observe that high-contrast
composites have two distinguishing features compared with
normal composites. The first is that high-contrast composites
can undergo a percolation transition, and the second is that
the effective properties are dependent on the local geometry
of the composite, say, the interinhomogeneity distance, as
much as the global parameter, such as the volume fraction. In
particular, if the physical property of the inhomogeneities is
zero or infinite, the inhomogeneities could have a significant
impact on the effective properties even if their volume frac-
tion vanishes. This is well understood in the context of frac-
ture mechanics10,11 but seems unnoticed for conductive com-
posites.

In this paper we give explicit solutions to the effective
properties of a class of periodic composites. To obtain these
solutions we choose a special class of microstructures called
periodic E-inclusions or Vigdergauz12 structures in two
dimensions.13 Unlike previous examples, our solutions are
rigorous and closed-form, which express the effective prop-
erties in terms of the volume fraction � of the inhomogene-
ities and the matrix Q, which characterizes the shape of the
inhomogeneities. A disadvantage of our solutions is that the
shape of periodic E-inclusions is not directly given; we need
to solve a variational inequality to find a periodic
E-inclusion.13,14 Nevertheless, without solving the varia-
tional inequality we know qualitatively the shapes of peri-
odic E-inclusions and how they depend on the volume frac-
tion � and the shape matrix Q. In particular, when the shape
matrix Q is singular and the volume fraction � approaches to
zero, the periodic E-inclusion degenerates to a slit in two
dimensions. In this case we express the effective properties
in terms of the length of the slit. It indicates that the widely
used rules of mixtures, which interpolate between the prop-
erties of the matrix and the inhomogeneities by volume frac-
tions, could be qualitatively misleading for high-contrast
composites.

Two remarks are in order here about the scope of this
paper. For simplicity we discuss the conductivity problem,a�Electronic mail: liuliping@uh.edu.
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but note that the solutions are applicable to other physical
properties including dielectric properties, diffusive proper-
ties, transport properties, and at least qualitatively, elastic
properties. More, our solutions are for periodic composites.
Therefore, the effects of percolation and randomness are not
addressed here.

The paper is organized as follows. In Sec. II we formu-
late the governing equation for a periodic composite and
derive the formulas for calculating the effective properties of
the composite. In Sec. III we define the periodic E-inclusion
and show how to calculate the effective properties of a com-
posite with a periodic E-inclusion microstructure. In Sec. IV
we discuss a particular situation that the periodic E-inclusion
degenerates to a periodic array of slits. For this particular
situation we give explicit solutions to local fields and effec-
tive properties for a rectangular lattice in Sec. IV A and for a
rhombic lattice in Sec. IV B. Finally we summarize our re-
sults in Sec. V.

II. PROBLEM FORMULATION

Let Y � IRn be a unit cell associated with a Bravais lat-
tice L, ��Y be an inclusion containing an inhomogeneity,
and � be the volume fraction of the inhomogeneities. Con-
sider a periodic two-phase composite with conductivity
given by

A�x� = �k0I if x � Y \ �

k1I if x � � ,
� �1�

where k0�0, k1�0, and I� IRn�n is the identity matrix. For
ease of terminology, we refer to phase-0 as the matrix and
phase-1 as the inhomogeneities. From the homogenization
theory,15 the effective conductivity of the composite, de-
scribed by a symmetric tensor Ae, is given by

f · Aef = min
u�W W

Y
��u + f� · A�x���u + f� , �2�

where WV= �1 / �V���V denotes the average of the integrand
over V ��V� denotes the volume of V�, f� IRn is the average
applied field, and the admissible space W is the collection of
all periodic square integrable functions u : IRn→ IR whose
gradients remain square integrable. To evaluate the effective
conductivity tensor Ae, we need to solve the Euler–Lagrange
equation of Eq. �2� for the minimizer uf,

�div�A�x���uf + f�� = 0 on Y ,

periodic boundary conditions on � Y ,
� �3�

and then compute the integral for u=uf on the right hand side
of Eq. �2�.

The effective conductivity of a composite can be ex-
pressed as a boundary integral of the minimizer uf or an
integral on one of the phases. To see this, we notice uf being
a periodic function and A�x���uf+ f� being divergence-free
imply

	
Y

�uf = 0 and 	
Y

�uf · A�x���uf + f� = 0. �4�

Therefore, we have

f · Aef =
W

Y
��uf + f� · A�x���uf + f�

=
W

Y
f · A�x���uf + f� = f ·

W
Y

��x�A�x���uf + f�

=
1

�Y�	�Y

�f · x�n · A�x���uf + f� , �5�

where n is the outward normal on �Y. Alternatively, from the
first line in Eq. �5� we find

f · Aef = k0W
Y

f · ��uf + f� + �k1 − k0�f · �
W

�

��uf + f�

= k0�f�2 + �k1 − k0�f · 
f − �1 − ��
W

Y\�
��uf + f�� .

�6�

For general inclusions, we do not have a closed-form
solution of Eq. �2�, and thus much of the works have been
focused on the bounds on the effective conductivity tensor
Ae and numerical methods that compute Ae for a given in-
clusion �. An exception is the case that the inclusion � is a
periodic E-inclusion. Below we describe what a periodic
E-inclusion is and calculate the effective conductivity of a
composite with the inclusion being a periodic E-inclusion.

III. EFFECTIVE CONDUCTIVITIES OF COMPOSITES
WITH PERIODIC E-INCLUSION INHOMOGENEITIES

Recently, the Liu et al.16 found a class of special inclu-
sions for which a closed-form solution of Eq. �2� is available.
These special inclusions, termed as periodic E-inclusions,
are defined as an inclusion ��Y such that the overdeter-
mined problem

��� = � − �� on Y ,

��� = − �1 − ��Q on � ,

periodic boundary conditions on � Y

 �7�

admits a solution where �� is the characteristic function of �
and

Q � Q ª �M

� IRsym
n�n:M is positive semidefinite with Tr�M�

= 1� . �8�

The Liu et al.13 showed the existence of periodic
E-inclusions for any volume fraction �� �0,1�, any matrix
Q�Q, and any Bravais lattice L. Figure 1 shows three ex-
amples of periodic E-inclusions in two dimensions �see Refs.
17, 16, and 13 for more examples�. We remark that periodic
E-inclusions are generalizations of two-dimensional struc-
tures constructed by Vigdergauz.12

If the inclusion � for the composite is a periodic
E-inclusion with matrix Q and volume fraction �, we claim
that a solution of Eq. �3� is given by
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uf = a · ��, a = �k1 − k0���1 − ���k1 − k0�Q + k0I�−1f .

�9�

To see this, we notice that for Eq. �3� the interfacial condi-
tion on �� can be written as

k1n · ��uf�x−� + f� = k0n · ��uf�x+� + f� ∀ x � �� ,

�10�

whereas � being a solution of ��=�−�� satisfies

����x−� − ����x+� = − n � n ∀ x � �� , �11�

where n is the outward normal on �� and x− �x+ � denotes
the limit from the inside �outside� of �. From Eq. �11� and
the second of Eq. �7�, direct calculation reveals that for any
a� IRn,

k0n · ��a · ���x+� + f�

= k1n · �− �1 − ��Qa + f� − k1�− �1 − ��n · Qa + n · f�

+ k0�− �1 − ��n · Qa + a · n + n · f�

= k1n · ��a · ���x−� + f�

+ n · ��k1 − k0��1 − ��Qa + k0a + �k0 − k1�f� . �12�

Therefore, if we choose the vector a as in Eq. �9�, the last
term on the right hand side of Eq. �12� vanishes, and hence
uf=a ·�� satisfies the interfacial condition �10�. Further, we
can easily verify that uf=a ·�� satisfies the first of Eq. �3� on
the interior and exterior of � and the periodic boundary con-
ditions on �Y. We thus conclude that uf=a ·�� is a solution
of Eq. �3� if � is a periodic E-inclusion and � is given by Eq.
�7�.

Using Eq. �9� we can calculate the effective conductivity
tensor Ae for a periodic E-inclusion. By the first line of Eq.
�6� and the second of Eq. �7� we find

Ae = k0I + ��k1 − k0�I − ��1 − ���k1 − k0�2Q��1 − ���k1

− k0�Q + k0I�−1. �13�

We remark that the above formula is rigorous and attains the
lower �upper� Hashin–Shtrikman3 bound if k0	k1 �k0�k1�.
It has a few regimes that need separate attention.

�1� If k1 is nonsingular, i.e., �0 or +
, formula �13� gives a
definite answer to the effective conductivity tensor of
the composite of a periodic E-inclusion with any matrix
Q�Q and any volume fraction �� �0,1� since �1−��
��k1−k0�Q+k0I is invertible. In particular, if we as-
sume the composite is isotropic, then the corresponding
matrix Q is equal to I /n. Denoting by ke the isotropic
conductivity of the composite, from Eq. �13� we have

ke

k0
=

�1 − ���n − 1� + �1 + ��n − 1��k1/k0

n − 1 + � + �1 − ��k1/k0
. �14�

�2� If Q is positive definite, formula �13� also gives a defi-
nite answer even if k1 is singular. In particular, we have

Ae/k0 = �1 − ��I − ��1 − ��Q�− �1 − ��Q + I�−1 if k1 = 0,

Ae/k0 = I +
�

1 − �
Q−1 if k1 = + 
 . �15�

The second of the above formula follows from the fact
that as k1→ +
,


�1 − ��Q +
k0

k1 − k0
I�−1

=
1

1 − �
Q−1 −

k0

�1 − ��2�k1 − k0�
Q−1Q−1

+ O�� k0

k1 − k0
�2� .

If the composite is assumed to be isotropic with the
effective conductivity denoted by k0

e �k

e � for k1=0 �k1

= +
�, then from Eq. �14� or Eq. �15� we have

k0
e

k0
=

�1 − ���n − 1�
n − 1 + �

,
k


e

k0
=

1 + �n − 1��
1 − �

.

�3� If �� �0,1�, Q is singular, and k1=0 or +
, formula �15�
yields a definite answer to Ae if we interpret the inverse
of a matrix M� IRn�n as

M−1 = lim
�↘0

�M + �I�−1.

�4� If �=0 and Q is singular, formula �15� is not necessarily
meaningful since we could get a term such as 0 ·
. Nev-
ertheless, such situations are physically interesting. Be-
low we focus on this regime in two dimensions.

IV. EFFECTIVE CONDUCTIVITIES OF COMPOSITES
WITH PERIODIC SLIT INHOMOGENEITIES

In this section we restrict ourselves to two dimensions
�n=2�. From the viewpoint of last section and in connection
with geometry, we are interested in the following limit: we

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIG. 1. �Color online� From outward to inward, the regions bounded by the
curves are periodic E-inclusions with matrices Q and volume fractions �
given by Eq. �16� and unit cell Y = �−1,1�2.
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fix the two ends of the periodic E-inclusion � along
x1-direction and let the dimension of � along x2-direction
shrink to zero. Using formulas in Refs. 17 and 16, we plot
three periodic E-inclusions in two dimensions for unit cell
Y = �−1,1�2 in Fig. 1. From outward to inward, the matrix Q
and volume fraction � are given by

Q = �
r

1 + r
0

0
1

1 + r
�, r = 0.5, 0.2, 0.01 and �

= 0.42, 0.17, 0.04. �16�

We note that as

Q → 
0 0

0 1
� and � → 0,

the periodic E-inclusion approaches to a slit parallel to
x1-axis. Our goal is to compute the effective conductivity Ae

in this limit for singular k1, for which Eq. �13� or Eq. �15� is
no longer applicable. If k1 is a finite positive number, from
Eq. �13� we have Ae=k0I, as expected.

To proceed, we reformulate problem �3� for k1= +
 or 0.
If k1= +
, the inclusion � necessarily remains as an equipo-
tential body, and so problem �3� is equivalent to

��uf = 0 on Y \ �̄ ,

t · ��uf + f� = 0 on � � ,

periodic boundary conditions on � Y ,

 �17�

where t is the tangent on ��. Since � is a slit parallel to
x1-axis, the second of Eq. �17� can be rewritten as

�uf�x1,x2�
�x1

+ f1 = 0 ∀ �x1,x2� � �� . �18�

If k1=0, from the Gaussian theorem we infer that problem
�3� is equivalent to

��uf = 0 on Y \ �̄ ,

n · ��uf + f� = 0 on � � ,

periodic boundary conditions on � Y .

 �19�

Since � is a slit parallel to x1-axis, the second of Eq. �19�
can be rewritten as

�uf�x1,x2�
�x2

+ f2 = 0 ∀ �x1,x2� � �� . �20�

We will give explicit solutions to Eqs. �17� and �19� for
a rectangular or a rhombic unit cell using Weierstrass elliptic
functions. In complex analysis, we denote by z=x1+ ix2

�x1 ,x2� IR� a point on the complex plane C. We identify the
complex plane C with IR2 in this obvious manner. Let
2�1 ,2�3�C with Im��1 /�3��0 be the periods and

L = �2
1�1 + 2
2�3:
1,
2 � Z� �21�

be the lattice. Associated with this lattice, we denote by Y the
open parallelogram with vertices 0, 2�1, 2�2=2��1+�3�,
and 2�3 and recall that the Weierstrass �-function

��z��1,�3� =
1

z2 + �
��L\�0�


 1

�z − ��2 −
1

�2� �22�

is Y-periodic, analytic on Y, has a second-order pole at every
lattice point in L, and takes the same value at any two points
which are symmetric with respect to �2. For more detailed
discussions of ��z ��1 ,�3�, the reader is referred to the text-
books of Markushevich18 and Ahlfors.19

A. Rectangular unit cell

We first assume that �1=�, �3= i� �� ,��0� and that
the slit �= �x1+ i� :�−�0	x1	�+�0� �0	�0	�� lies on
the horizontal line Im�z�=�. In this case, Y is an open rect-
angular with base 2� and height 2� �see Fig. 2�. We briefly
write ��z�=��z ��1=� ,�3= i�� in this section. From
Markushevich18 we know that ��z� takes real values on the
vertical lines Re�z�=� and horizontal lines Im�z�=� and
nonreal values otherwise on the parallelogram Y. Further,
�0,���x���x+ i�� ��0,���x����+ ix�� is strictly in-
creasing �decreasing�. Let ei=���i� �i=1,2 ,3�. Clearly, e3

	e2	e1 and

��� − �0 + i�� = ��� + �0 + i�� ¬ e23 � �e3,e2� �23�

is a real number between e3 and e2. Let �per= �z+� :z
�� ,��L� be the periodic extension of �. Following Ref.
17, we define

��z� = 	
��0,z�

��z1�dz1 ¬ U�x1,x2� + iV�x1,x2�, ��z�

=� ��z� − e2

��z� − e23
, �24�

where ��0,z� denotes a rectifiable integration path contained

in C \�̄per, U�V� : IR2 \�̄per→ IR is the real �imaginary� part of
�, and the square root takes values only from the branch
with �1=1 �the branch cut is along the negative real axis�.
Grabovsky and Kohn17 showed that ��z� is single-valued,

analytic on C \�̄per, and hence satisfies the Cauchy–Riemann
equation

�U

�x1
=

�V

�x2
,

�U

�x2
= −

�V

�x1
on C \ �̄per. �25�

Let

FIG. 2. �Color online� Rectangular unit cell.
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t1 = ���� = 	
�1

��z�dz and it3 = ��i�� = 	
�2

��z�dz ,

�26�

where �1= �x1+ ix2 :0�x1�� ,x2=0� and �2= �x1+ ix2 :0
�x2�� ,x1=0�. Since IR���z��e1 on �1, IR���z��e3

on �2, and Re���z��=0 ∀z��, we see that t1 , t3�0,

�U�x1,x2�
�x1

=
�V�x1,x2�

�x2
= 0 ∀ �x1,x2� � �� . �27�

In particular, we notice that U is continuous on IR2, but V is
discontinuous across the slit �. Since d /dz���z+2��
−��z��=0 and d /dz���z+2i��−��z��=0, by Eq. �26� we
have

� ��z + 2�� = ��z� + 2t1

��z + 2i�� = ��z� + 2it3
� ∀ z � C \ �̄per. �28�

From Eq. �28� and the first of Eq. �24�, we obtain

U�0,x2� = U�2�,x2� − 2t1, V�0,x2� = V�2�,x2�, ∀ x2

� �0,2�� ,

U�x1,0� = U�x1,2��, V�x1,0� = V�x1,2�� − 2t3, ∀ x1

� �0,2�� . �29�

We claim that

uf�x1,x2� =
�f1

t1
U�x1,x2� − f1x1 ∀ �x1,x2� � Y \ �̄ �30�

is a solution of Eq. �17�. To show this, we notice that uf
defined by Eq. �30� satisfies the first and second of Eq. �17�
�see Eqs. �18� and �27��. The last of Eq. �17�, i.e.,

uf�0,x2� =
f1�

t1
U�0,x2� =

f1�

t1
U�2�,x2� − 2f1�

= uf�2�,x2� ∀ x2 � �0,2�� ,

uf�x1,0� =
f1�

t1
U�x1,0� =

f1�

t1
U�x1,2��

= uf�x1,2�� ∀ x1 � �0,2�� , �31�

follows from Eq. �29�.
We now calculate the effective conductivity tensor Ae.

Note that Eq. �6� is not applicable for k1=
 and �=0, and we
shall use Eq. �5�. From Eqs. �25�, �29�, and �30� we find

f · Aef =
1

4��
	

�Y

�f · x�n · A�x���uf + f�

=
k0

4��
	0

2�

2�f2� �uf

�x2
+ f2�dx1

+ 	
0

2�

2�f1� �uf

�x1
+ f1�dx2�

= k0f2
2 +

k0

4��

�f1

t1

	

0

2�

2�f2
�U

�x2
dx1

+ 	
0

2�

2�f1
�U

�x1
dx2�

= k0f2
2 +

k0

4��

�f1

t1
�− 2�f2V�x1,x2��x1=0

x1=2�

+ 2�f1V�x1,x2��x2=0
x2=2�� = k0� f2

2 + f1
2�t3

�t1
� .

That is,

1

k0
Ae = ��t3

�t1
0

0 1
� . �32�

It is convenient to relate the effective conductivity di-
rectly with the geometric parameters, e.g., the length of the
slit 2�0. To this end, we note that �see Ref. 18�


d��z�
dz

�2

= 4���z� − e1����z� − e2����z� − e3� ,

� =
1

�e1 − e3

K� e2 − e3

e1 − e3
�, � =

1
�e1 − e3

K� e1 − e2

e1 − e3
� ,

�33�

where

K�m� = 	
0

1 dt

�1 − t2��1 − mt2�

is the complete elliptic integral of the first kind. Changing
the integration variable from z to �=��z�, by Eq. �33� we
write Eq. �26� as

t1 = 	
e1

+
 1
�4�� − e1��� − e23��� − e3�

d�

=
1

�e1 − e3

K� e23 − e3

e1 − e3
� ,

t3 = 	
−


e3 1
�− 4�� − e1��� − e23��� − e3�

d�

=
1

�e1 − e3

K� e1 − e23

e1 − e3
� . �34�

Therefore,

FIG. 3. �Color online� Rhombic unit cell.
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�t3

�t1
=

K�m0�K�1 − m��
K�1 − m0�K�m��

, m0 =
e2 − e3

e1 − e3
, m� =

e23 − e3

e1 − e3
.

�35�

We now discuss how the effective conductivity depends
on the geometric parameters of the microstructures. First, let
us fix the unit cell and calculate �t3 /�t1 as a function of �0.
Setting �=d /2 and �=L /2, we have periodic slits as shown
in Fig. 8. By Eqs. �34� and �35� we compute �t3 /�t1 versus
�0� �0,1� shown by the unmarked curves in Fig. 4. From up
to down, the curves are calculated for �=1 and 2�=L
=2.5,2 ,1.5,1. Immediately, we see the effective conductiv-
ity along x1-direction increases from one to infinity as the
length of the slit increases from 0 to 2�. In Fig. 5 we set
�=1 and compute �t3 /�t1 versus �� �0,1�. From up to
down, the half length of the slit, �0, is 0.9, 0.8, and 0.4. We
see that the larger � is, the smaller effect the perfectly con-
ducting slits have on the effective conductivity. In the limit
of �→ +
, the effective conductivity of the composite shall
be the same as the matrix if �0��. To measure the effect of
the slits in this limit, we define a dimensionless quantity

� = lim
�→+


�

�

�t3��,�,�0�

�t1��,�,�0�
− 1� .

Physically k0��2f1
2 can be interpreted as the energy of the

stray field of an infinite vertical strip of width 2� in the
presence of a periodic array of perfectly conducting slits and
under the application a uniform far field f= �f1 , f2�. By di-
mensional analysis we infer �=���0 /��. An analytic expres-
sion of it is desirable but not obvious. We turn to numerical
method. Figure 6 shows the curve �=���0 /��. Finally, we
plot the local field in the unit cell for �=�=1 and �0=0.8 in
Fig. 7. We remark that the field is in fact singular around the
two tips of the slit as if there are static and opposite signed
charges concentrated at the two tips.

We now consider the case k1=0. Similarly, from Eqs.
�27� and �29� we verify that

uf�x1,x2� =
f2�

t3
V�x1,x2� − f2x2 ∀ �x1,x2� � Y \ �̄ �36�

satisfies all of Eq. �19�. Since k1=0 and �=0, from the last
line of Eq. �6� we have
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/α=l/L

α
t 3/β

t 1

L=1

L=1.5

L=2

L=2.5
FIG. 4. �Color online� The effective conductivity in
x1-direction vs the length of the slit. From up to down,
the unmarked curves are calculated for rectangular unit
cells with 2�=d=2 and 2�=L=2.5,2 ,1.5,1. The +
markers are calculated for rhombic unit cells with 2�
=d=2 and 4�=L=2.5,2 ,1.5,1 �see also Figs. 8 and 9�.
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FIG. 5. �Color online� The effective conductivity in
x1-direction vs the aspect ratio of the rectangular unit
cell. From up to down, the curves are calculated for �
=1 and �0=0.9,0.8,0.4.
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f · Aef = k0�f�2 + k0f ·
W

Y\�
�uf. �37�

To find the unknown integral on the right hand side of Eq.
�37�, we notice that from the Green’s theorem or the diver-
gence theorem,

	
�Y

iU

U
� · nds = 	

Y\�

 �U

�x2
+ i

�U

�x1
�dx1dx2

+ 	
��


iU

U
� · nds , �38�

where �ds�2= �dx1�2+ �dx2�2 and n is the outward normal on
�Y or ��. Since U is continuous and bounded on Y, the last
term on the right hand side of Eq. �38� vanishes. From Eqs.
�25�, �29�, and �38� we obtain

	
Y\�


−
�V

�x1
+ i

�V

�x2
�dx1dx2 = 	

�Y

iU

U
� · nds = 4it1� .

�39�

From Eqs. �36� and �37� we conclude that

f · Aef = k0
�f�2 + f2
2��t1

�t3
− 1�� ⇒

1

k0
Ae = �1 0

0
�t1

�t3
� .

�40�

We remark that Eq. �40� can also be obtained from Eq. �32�
by the duality transformation.4,5,15

B. Rhombic unit cell

In this section we assume that �1=�− i�, �2=2�, and
�3=�+ i� �� ,��0� and that the slit �= �x1 :2�−�0	x1

	2�+�0� �0	�0	2�� lies on the x1-axis �see Fig. 3�. In
this case, Y is an open rhombus with side length of 2��2

+�2�1/2 and area of 8��. We again briefly write ��z�
=��z ��1=�− i� ,�3=�+ i��. Accordingly, we use the same

notations in this section for the same type of quantities as in
the last section. Within the context this shall not give rise to
confusion.

From Markushevich18 we know that ��z� takes real val-
ues on the vertical lines Re�z�=2� and horizontal lines
Im�z�=0 and nonreal values otherwise on the open parallelo-
gram Y. Let ei=���i�. We further know that e1= ē3 is not a
real number and �0,2���x���x� strictly decreases from
+
 to e2. Let

e23 = ��2� − �0� = ��2� + �0� � �e2, + 
�

and define, as in Eq. �24�,

��z� = 	
��0,z�

��z1�dz1 ¬ U�x1,x2� + iV�x1,x2�, ��z�

=� ��z� − e2

��z� − e23
. �41�

We can similarly verify that ��z� is single-valued, ana-

lytic on C \�̄per, and hence satisfies the Cauchy–Riemann Eq.

�25� on C \�̄per. Let

t1 − it3 = 1
2��2� − 2i�� = 1

2	
�1

��z�dz , �42�

where �1 is the straight path from 0 to 2�1=2�−2i�. Since
��z�=��z̄� and �z=�z̄, we have

t1 + it3 = 1
2��2� + 2i�� = 1

2	
�2

��z�dz , �43�

where �2 is the straight path from 0 to 2�3=2�+2i�. Let
�3= �x :0�x�2�−�0�. Since Im���z��=0 on �3 and
Re���z��=0 on �, we have

�U�x1,x2�
�x1

=
�V�x1,x2�

�x2
= 0 ∀ �x1,x2� � �� . �44�

Analogous to Eqs. �28�–�40�, we again find that
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FIG. 7. �Color online� The electric field in the unit cell for �=�=1 and
�0=0.8.
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FIG. 6. �Color online� The dimensionless quantity � vs �0 /�.
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uf�x1,x2� =
�f1

t1
U�x1,x2� − f1x1 ∀ �x1,x2� � Y \ �̄

is a solution of Eq. �17�, and therefore,

1

k0
Ae = ��t3

�t1
0

0 1
� . �45�

The reader is invited to carry out the detailed calculations.
More, from Ref. 18 we find

�

�
=

	
0


 dt
�t4 + 2t2 cos �0 + 1

	
0


 dt
�t4 − 2t2 cos �0 + 1

, exp�2i�0� =
e2 − e1

e2 − e3
,

t1

t3
=

	
0


 dt
�t4 + 2t2 cos �� + 1

	
0


 dt
�t4 − 2t2 cos �� + 1

, exp�2i��� =
e23 − e1

e23 − e3
,

�46�

where 0	�0 ,��	�.
To investigate the effects of different lattices or unit

cells, we compare the following two configurations �see
Figs. 8 and 9�. It is not hard to see that the periodic slits in
Fig. 8 correspond to a rectangular unit cell in Fig. 2 with
�=L /2, �=d /2, and �0= l /2, whereas the periodic slits in
Fig. 9 correspond to a rhombic unit cell in Fig. 3 with �
=L /4, �=d /2, and �0= l /4. Meanwhile, if we shift to the left
by L /2 every other layer of the slits in Fig. 8, we obtain the
configuration in Fig. 9. Using Eqs. �35� and �46�, in Fig. 4
we plot the effective conductivities along x1-direction of
these two configurations against l /L by unmarked curve and
“+” markers, respectively. From up to down, the geometric
parameters in Figs. 8 and 9 are chosen as d=2, l=1, and L
=2.5,2 ,1.5,1. We observe that there is no discernible differ-
ence between the unmarked curve and + markers in Fig. 4,
which means the effective conductivities of the two configu-
rations in Figs. 8 and 9 are the same, at least to the extent of
our numerical resolution. The reader may speculate that this
arises from symmetry; the author remarks that elementary
arguments by symmetry cannot prove this unexpected result.

For the case k1=0, by similar arguments we verify that

uf�x1,x2� =
f2�

t3
V�x1,x2� − f2x2 ∀ �x1,x2� � Y \ �̄ �47�

satisfies all of Eq. �19�. Parallel to Eqs. �37�–�40� or simply
by the duality transformation, we can show the effective con-

FIG. 8. �Color online� Periodic slits arranged in a rectangular lattice.

FIG. 9. �Color online� Periodic slits
arranged in a rhombic lattice.
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ductivity is given by Eq. �40� with �, �, t1, and t3 interpreted
as in Eq. �45�.

V. SUMMARY AND DISCUSSION

We derive a closed-form formula for the effective con-
ductivity of composites with periodic E-inclusion micro-
structure. When the periodic E-inclusion degenerates to a
periodic array of slits, we give explicit solutions to local
fields and the effective conductivity of the composite with
singular inhomogeneities. Through a linear transformation,
these results can be extended to two-phase composites of any
anisotropic materials.

The results of this paper can be used in the following
ways. In the first place the closed-form formula �13� with the
volume fraction � and the shape matrix Q as parameters can
be used to give a quick estimate of the effective properties of
a composite. In reality, of course, it is questionable to what
extent the microstructure of a composite can be approxi-
mated by a periodic E-inclusion. However our prediction
�see Eq. �13�� is at least physical and realizable, and the
qualitative feature of how the effective properties depend on
the volume fraction and shape of the inhomogeneities should
remain regardless of the exact shapes of the inhomogeneities.
Second, the analytic results provide a benchmark for testing
various empirical models and numerical codes. Last but not
least important, the results in Sec. IV, in particular the com-
parison between rectangular and rhombic unit cells �see Fig.
4�, suggest that the effective properties of composites with a
singular phase are predominantly determined by the distance

between nearby inhomogeneities. This has been observed by
various authors and is in fact the basis of the network
model.6–9 What is noteworthy here is that this remains to be
true even for an extreme shape such as a slit, for which the
field is not localized between slits �see Fig. 7�.
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