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Solutions to the Eshelby conjectures
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We present solutions to the Eshelby conjectures based on a variational inequality. We first
discuss the meanings of Eshelby’s original statement. By Fourier analysis, we establish the
connection between the homogeneous Eshelby inclusion problem and the classic Newtonian
potential problem. We then proceed to the solutions of the Eshelby conjectures. Under some
hypothesis on the material properties and restricted to connected inclusions with Lipschitz
boundaries, we show that one version of the Eshelby conjectures is valid in all dimensions and
the other version is valid in two dimensions. We also show the existence of multiply connected
inclusions in all dimensions and the existence of non-ellipsoidal connected inclusions in three
and higher dimensions such that, in physical terms and in the context of elasticity, some
uniform eigenstress of the inclusion induces uniform strain on the inclusion. We numerically
calculate these special inclusions based on the finite-element method.
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1. Introduction

The following remarkable property of ellipsoids was first observed by Poisson
(1826): given a uniformly magnetized/polarized ellipsoid, the induced magnetic/
electric field is also uniform inside the ellipsoid. Explicit expressions for this field
were obtained by Maxwell (1873). A similar result also occurs in linearized
elasticity, where the Eshelby solution asserts that a uniform eigenstress on an
ellipsoidal inclusion in an infinite elastic medium induces uniform strain inside
the ellipsoid (Eshelby 1957, 1961; Mura 1987). In a general setting, this
remarkable property of ellipsoids can be summarized as the following theorem.

Theorem 1.1. Let L : R™" — R™" be either self-adjoint and positive definite
or an elasticity tensor with the usual symmetries, Q@ CR" be an inclusion and xo

be the characteristic function of Q. Let v € WI’Q([F{{"7 R™) be a solution of

div[LVv + Py =0 lOL;)n R" (1.1)
in the sense that
Vo)) -—‘—1j N, (k)(P) »<k>»<k>»j <p(ik- (@—a))dz'dk,  (1.2)
v(x ’”_(277)" o Nog 4(k)(k); Qe p z—x'))dx dk, .

where N,,(k) is the inverse of the matriz (L), (k);(k);. If n=2, 3 and Q is

qj
an ellipsoidal inclusion, then Vv is uniform on Q for any P € R™",
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In equation (1.2) and subsequently, the Einstein summation convention is
followed. Throughout this paper, we mean by the term inclusion an open and
bounded domain which may have several separated components. Obviously, the
representation formula in (1.2) follows from Fourier analysis, see Khachaturyan
(1983) and Mura (1987). Below, we sometimes write a solution of (1.1) as v(z, P) to
emphasize the (linear) dependence of von P. A proof of theorem 1.1 can be adapted
from the calculations in Mura (1987, ch. 3), see also Asaro & Barnett (1975). Note
that equation (1.1) covers the physical problems mentioned above. In electro-
statics/magnetostatics, m=1 and equation (1.1) determines the electric/magnetic
field Vovinduced by a uniform polarization/magnetization P on Q with permitivity /
permeability tensor L. In linearized elasticity, equation (1.1) is referred to as the
homogeneous Eshelby inclusion problem, where L, v and P represent elasticity
tensor, displacement and eigenstress, respectively. Since Vv being constant on Q
leads to great simplification, ellipsoidal inclusions play a central role in the theory of
composites (Christensen 1979; Milton 2002), in micromechanics (Mura 1987) and
in experimental measurements (Brown 1962). The uniformity of the induced field
can also be used to solve the minimization problems that arise in the theories of
ferroelectric and magnetostrictive materials (Bhattacharya & Li2001; DeSimone &
James 2002; Liu et al. 2006). To extend these analyses, a natural question arises: are
there any other inclusions having this uniformity property? Eshelby (1961)
conjectured: ‘... Among closed surfaces, the ellipsoid alone has this convenient
property ...". One can take this statement to mean the following.

(i) For an inclusion @ CR?, if the induced field Vu(z, P) defined by (1.2) is
uniform on Q for a single non-zero P € R3”3, then Q must be an ellipsoid.

(ii) For an inclusion QCR? if the induced field Vo(, P) defined by (1.2) is
uniform on Q for any P € R¥%, then Q must be an ellipsoid.

In the context of Eshelby (1961), the tensor L in (1.1) is an isotropic elasticity
tensor. Naturally, we generalize these conjectures to other positive semi-definite
tensors and other dimensions. For future convenience, we refer to statements
(i) and (ii) as Eshelby conjectures I and II, respectively. Clearly, Eshelby
conjecture I implies Eshelby conjecture II. It appears that many authors tacitly
choose the second meaning of Eshelby’s statement and quote it as the Eshelby
congecture (e.g. Markenscoff 1998a; Mura 2000). Various authors have tried to
prove or disprove the Eshelby conjecture. For instance, Mura et al. (1994; see
also Mura 2000) claimed that certain pentagonal star-shaped domains share this
remarkable property with ellipsoids, which was later pointed out by Rodin (1996)
and Markenscoff (1998a) to be false. Markenscoff (1998a) showed that the
domains in R® with this uniformity property, considered in a proper space, have
to be closed and form a nine-dimensional manifold. She also showed that any
shape with a planar piece on its boundary cannot have this property
(Markenscoff 1998b). Meanwhile, all other known solutions for non-ellipsoidal
inclusions do not contradict the Eshelby conjectures; see Lee & Johnson (1977)
for solutions of cuboidal inclusions, Wu & Du (1995) for solutions of circular
cylinders and Rodin (1996) for solutions of polyhedra. The Eshelby conjectures
were proved by complex variables method in two dimensions (see Sendeckyj
1970; Ru & Schiavone 1996). All this evidence suggests that the Eshelby
conjectures, especially the second version, would probably be true in any
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dimension. The main difficulty of a proof arises from the non-local dependence of
Vo on Q, which is governed by the partial differential equation (1.1). Therefore,
it is hard to verify if Vv is exactly uniform on Q for a given inclusion Q.

In this paper we present solutions to the Eshelby conjecture interpreted in either
sense. We overcome the aforementioned difficulty by considering a variational
inequality. Roughly speaking, instead of calculating the induced field Vv for a
given inclusion Q, we prescribe the field Vv and then construct the inclusion Q such
that it gives rise to this field. In this way we are able to show the validity of Eshelby
conjecture II if restricted to connected inclusions with Lipschitz boundaries.
Moreover, we can construct simply connected non-ellipsoidal inclusions in three
dimensions and multiply connected inclusions in all dimensions having uniform
fields Vv on the inclusions for various matrices P. The existence of such simply
connected non-ellipsoidal inclusions shows that the validity of Eshelby conjecture
Iin general depends on the tensor L and the matrix P in three or more dimensions
even if restricted to connected inclusions with Lipschitz boundaries.

To proceed, we shall require that

m=n and (L)piqj = ,ul‘sij(qu + #26pj6iq + A(Sipﬁjq, (13)
where 6; (i,j=1,...,n) are the components of the identity matrix I. The
constants uy, uo and A are required to satisfy

B> o, pgtue>0 and  A>—(uy + ug)/m, (1.4)

which ensures L is either positive definite or an isotropic elasticity tensor. It is
worthwhile noticing that tensors of this form cover the most common situations
in the physical problems discussed above. In particular,

(i) uy = ue = > 0 corresponds to isotropic elasticity tensors and

(ii) uy=A=0 corresponds to isotropic permittivity/permeability tensors in
electrostatic/magnetostatic problems. In fact, each component in the
vector v is the potential induced by the polarization/magnetization of the
corresponding row vector in the matrix P.

We now state the main results of this paper.

Theorem 1.2. Ifn>2 Lisgivenby(1.3) and(1.4), and, ifrestricted to connected
inclusions with Lipschitz boundaries, Eshelby conjecture II holds. More precisely, if
an inclusion Q is connected and Q is Lipschitz continuous, and if equation (1.1)
with L specified by (1.3) and (1.4 ) has a solution v(x, P) satisfying

Vo(z, P) = const. onQ V PeER™", (1.5)
then Q must be an ellipsoidal inclusion.

Theorem 1.3. Ifn=2, L isgivenby(1.3) and(1.4), and, if restricted to connected
inclusions with Lipschitz boundaries, Eshelby conjecture I holds. More precisely, if
an inclusion Q is connected and 0Q is Lipschitz continuous, and if equation (1.1)
with L specified by (1.3) and (1.4) has a solution v(x, P) satisfying

Vo(z, P) = const. on Q for a single non-zero P € R™", (1.6)
then Q must be an elliptic inclusion.

Theorem 1.3 has been proved by Sendeckyj (1970), see also Ru & Schiavone
(1996). We recently learned of works of Kang & Milton (in press) who proved
theorem 1.2 for n=3, see also Dive (1931) and Nikliborc (1932). They also observed
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that the Pélya & Szegd conjecture (1951) is equivalent to Eshelby conjecture II for
L specified as in (1.3). Also, they found a class of two-component two-dimensional
inclusions with the special property described in theorem 1.4 (Kang et al.
submitted; see also Cherepanov 1974). We remark that our work is simultaneous
and independent from theirs. In particular we are able to construct the following
examples, which show that the requirement of Q being connected in theorem 1.2 and
the condition n=2 in theorem 1.3 are indispensable.

Theorem 1.4. Consider equation (1.1) with L specified by (1.3) and (1.4).
There exist multiply connected inclusions Q CR" (n>2) such that:

(i) the induced field Vo(x, P) is uniform on Q for any P € R™" if uy,+A=0 and
(i) the induced field Vv(z, I) is uniform on Q for the identity matriz I € R™" if

Theorem 1.5. If n>3, Eshelby conjecture I may or may not be valid, depending
on the tensor L and the matriz P € R"™". More specifically, if an inclusion Q is
connected and 0Q is Lipschitz continuous, and if equation (1.1) with L specified
by (1.8) and (1.4) with us+2A=0 has a solution v(x, P) satisfying

Vo(z, P) = const. on Q for a single non-zero P € R™", (1.7)

(i) of P=1I, Q must be an ellipsoidal inclusion and
(ii) o P=diag(1,0,...,0), Q need not be an ellipsoidal inclusion, see the
counterexample in §3d.

The paper is organized as follows. In §2 we introduce a variational inequality
and explain how it is related with the Eshelby conjectures. From the established
theory of variational inequalities, we obtain the key existence and uniqueness
theorem 2.3. Based on theorem 2.3, we prove Eshelby conjectures I and II
(theorems 1.2 and 1.3) in §3a,b, respectively. We prove theorems 1.4 and 1.5 in
§3c,d, respectively. A numerical scheme is described in §3¢ and is used to
calculate various special inclusions in §3¢,d. A similar scheme has been verified
and applied to calculate periodic E-inclusions in Liu et al. (submitted). Finally,
in §4 we summarize our results and propose a few applications.

2. A related variational inequality

In this section we first explain the relation between equation (1.1) and the classic
Newtonian potential problem. Let I'(x) = I'(|x|) be the fundamental solution of
the Laplace operator on R"

1
glog(|m|) if n =2,

1 1
n(2—n)w, |z|">

if n> 3,

Proc. R. Soc. A (2008)



Solutions to the Eshelby conjectures 77

where w,, denotes the Volume of a unit ball in R". Following eqn (4.2) of Gilbarg &
Trudinger (1983), we call w(x) =—[g.I'(x —y)xo(y)dy the Newtonian potential
induced by the source — . Clearly, the Newtonian potential satisfies the Poisson
equation

Au(x) = —xo(x) on R" (2.2)
By Fourier analysis, the second gradient of the Newtonian potential u(x) can be
represented as

Vou(ol, = e [, A

T 2m)" |k|? J WXQ(ZEI) exp (ik-(z —z'))dz’ dk. (2.3)

Owing to the special form of L (cf. (1.3)), VVuin (2.3) are closely related with Vovin
(1.2). To see this, we calculate the inverse of (L),;,;(k):(k); ai

1 po + A (k)p(k)q
N, (k) =— 6 —
(k) ,ullk|2 POy (A + py + o) |k|*

whence (L),;,;(k)i(k); = w|k|*d,,+ (uy + 2)(k),(k),. Comparing equation (1.2)
with (2.3), we immediately have

Lemma 2.1. Consider equation (1.1) with L specified by (1.3) and (1.4) and
the Newtonian potential problem (2.2). Let Vu(x, P) and VVu(x) be given by
(1.2) and (2.8), respectively.

: (2.4)

(i) For any inclusion Q and P=1I, we have

Vo(z, I) = VVu(z)/ () + py + A). (2.5)

(ii) If in particular us+A=0, then, for any P € R™", we have
Vo(z, P) = PVVu(x)/u,. (2.6)

From lemma 2.1, we see that the uniformity of Vu(z, I) on Q is equivalent to
the uniformity of VVu on Q. Of course, for the Newtonian potential problem (2.2),
VVu being uniform on Q is an overdetermined condition and cannot be true unless
Q is very special. From theorem 1.1, we know that ellipsoids enjoy such property.

To construct special inclusions such that a certain overdetermined problem
admits a solution, we consider the following variational inequality:

G.(u,) = inf {Gr(v) = lB,. % Vo2 dm}, 2.7)

vEK,

where B, CR" (n>2) is the open ball centred at the origin of radius r and for a
given function ¢ : R" — R called the obstacle, the admissible set

K,=={v—g,(r)€ Wi*(B,): v=¢ on B,}. (2.8)
Here g, : (0,9) — R is defined as (Q>0 is fixed)
—Qlogr, ifn=2,
n\T) = 2.9
() {0 it n>3. (29)
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Note that g,(r) is a constant for fixed 7. In the following discussions we restrict
ourselves to obstacles ¢ : R" — R with the following properties:

(i) ¢ € C*Y(R"), there exists Ry>0 such that for some 0< R} < Ry, ¢(x) <
gn(|z|) —a(RY)) for all |z|> R, where

[ max{|¢(z)| : [z| = Ry} +|9.(Rp)| if n =2,
if n> 3,

(ii) |A¢| is essentially bounded on Bp \U*, where U" is the set of singular
points on which |[VV¢@| is unbounded in distributional sense, and

(iii) for all unit vector £ €R™, 8%¢/05% > —C on R" in the sense of distributions,
where 0/0¢ denotes the directional derivative. In other words,

62<P 1 2
for any ¢ € C7 (R") = {smooth functions with compact support} (see
Friedman 1982, p. 27).

We use the variational inequality (2.7) to find the minimizer u, and the
coincident set {x € B, : u,(x) = ¢(x)}, and then we pass to the limit r— o to
establish the existence of special inclusions such that a certain overdetermined
problem admits a solution. Similar arguments of this type can be found in Liu
et al. (submitted). For the convenience of the reader, we present the details of the
arguments below which treat general obstacles and include the case n=2.

First, let us recall from the established theory (Kinderlehrer & Stampacchia
1980, p. 129; Friedman 1982, p. 31) the following existence and regularity theorem:

Theorem 2.2. For the obstacle ¢ specified above, the wvariational inequality
(2.7) has a unique minimizer u, € W>*(B,) N K, for each r>R,. Further, the
unique minimizer satisfies

(i) < u,<sup{¢(x):xz € B,} on B,
(ii) the boundary of the coincident set Q,={x € B, : u,(x)=d¢(x)} has
measure zero in R", and
(iii) there exists a constant C>0, independent of r, such that

IVVu,||=5) < C. (2.10)

By choosing appropriate test functions (Friedman 1982, p. 6), it can be shown
that the minimizer w, satisfies

—Au, >0, Up = P and —Au,(u,—¢) =0 a.e.on B,. (2.11)
Thus, the minimizer u, in fact solves the following overdetermined problem:

Au, = xo A¢ a.e.on B,
VVu, =VV¢ onQ,\0Q,, (2.12)
U, = gp(T) on JB,.
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A limiting minimizer of problem (2.7) can be defined as follows. Let r; — +o be
an increasing sequence. From the properties (i) and (iii) of u, in theorem 2.2, it
follows that, for any r> R> Ry, there is a constant M, independent of r, such that

el g2y < M. (2.13)

Since u,, is uniformly bounded in W2 (Bp) for fixed R> R, there exists u, €
W= (B R) such that, up to a subsequence and without relabelling,

N koo 2700
U, — U weakly” in W7 (Bg). (2.14)
From (2.11) and (2.14), we can verify that
—Aupy, >0, Upe>¢ and —Aue(u,—¢) =0 a.e.on Bp. (2.15)

In particular, the first two of (2.15) follow from linearity, while the third of (2.15) is
justified by the uniform convergence of u,. — u,. In fact, we can repeat this argument
for a sequence of larger and larger values of R, each time taking further subsequences
of u,., and thereby obtain a function u. € W= (R") satisfying (2.14) and (2.15) for

any R> Ry. Note that equation (2.15) implies that the coincident set Q, == {x €R" :
U (%) = ¢(x) } C By, has the property that [0Q.|= 0 (see Friedman 1982, p. 154).

We claim that u. solves the following overdetermined problem:
Au, = xgo, A a.e. on R",

VVu, = VV¢ on 2,\09.,
(2.16)

G
|tee () — g (| 2])| < m% for || = R,

for some Cy>0 that is independent of x. The first two equations in (2.16) are
consequences of the last equation in (2.15) and the definition of the coincident set
Qo with [0Q,|=0

To justify the last equation in (2.16), we note that, by the maximum principle
applied to the first of (2.11), the minimum of u,(x) must be attained at 0B,
which implies u,.(x) > g¢,(r) on B,. From equation (2.9) and property (i) of the
obstacle, it immediately follows that, if n> 3, the coincident set Q,. is contained in
the open ball By for all r> R, We now show that this is also true for n=2.
If n=2, we note that Afu.(z)— g,(|z|)]=Au,(z)<0 on B\Bp for any
0< Ry < Ry. Also, u,(z) g, (|]) = 0 on 05, and T o) on(lal] < o 9(2)]
T E€0By } + [g,(R 0)| = a(R() on 0Bp,. From the maximum principle applied to
u,(x) — g,(|z|) restricted to B, A\ DBy, we conclude that u,(z) > g,(|#|) —a(R}) on
B\ Bp:. By property (i) of the obstacle, we have that the coincident set Q, C By,
for n=2 and all r> R,.
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Further, we recall the Dirichlet Green’s function for B, (Gilbarg & Trudinger
1983, p. 19)

! 2 2 e
or (1=l —tox(\/(Jalll/ )+ r* =22y )| fne2
G (z,y) =
1 2—n
. n_f<\/(!w\\y!/7")2+r2—2w-y> if n>3.
n(2—n)w, ||ly—z|
(2.17)

From the first and third equations in (2.12), we can express u, as

u (@) = (1) + | Gl 5)A0(v)x0, (W) (2.18)

From equation (2.10), we have Q, C (Bg \U") for all r> R, and hence |A¢| is
essentially bounded on Q, by property (ii) on p. 6. From equations (2.9), (2.17)
and (2.18) it immediately follows that, for n>3,

[ur(®) = go(|])| = [u, (2 )|<| |Cn 7 VR <[z[<r, (2.19)

where (>0 is a constant independent of . For n=2, since Q, C Bp , Afu,(x) —
9,(|Z|)]=0 on B,\Bp, by the first equation in (2.12). Again, note that u,(z)—
9,(|2[)=0 on 8B, and |u,(x) — g,(|z|)| < a(R;) on 0Bg . From the maximum
principle applied to wu,(z)— g,(|z|) restricted to B,\Bp, we conclude that
equation (2.19) also holds for n=2 and the constant Cy=0a(R,). Therefore, by
the triangle inequality and (2.19) we have

|t (®) = g (|2])] < [ee () — 0y, ()] + |, () — g, (|2])]
< |u, () — ue ()| + Co/|Z|" % on Bj.

Fixing R and sending r;— o, we get the third equation in (2.16) for all n>2.
Finally, we show that the limiting minimizer u., must be umque Assume
that equations (2.15) and (2.16) are satisfied by a second function ul, € W27 (R").
Let QL :=={xz €R" : ul(z) = ¢(z)} be the new commdent set. By the divergence
theorem, we have for any R> Ry and any v € K,, :=={w & W,*(R") : w> ¢},

,[BHVUOO V(v— uy)dx —J

(V= U )MV, dS = J (AU ) (v— Uy )dx
0Bp Bp

= J (AU ) (v — Uy )dx + [ (—Aug)(v—¢)dx>0, (2.20)
{zE€BRu>¢} {x EBRiu,=0¢}

where dS denotes the surface measure on 0Bp, 1 is the outward normal of dS,
and the inequality follows from (2.15). Clearly, equation (2.20) holds with ue
replaced by ul, as well:

JVU;-V(U—U;)dm—J (v—ul)n-Vu, dS>0 VoveK,. (2.21)
By 3By
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Since Uk, U, € K, adding equation (2.20) with v=ul, to equation (2.21) with
U= 1U,, We obtain

—J IV (uly — ) |* daz + J (Uoo — Ul )1+ V (Uoo — Use )dS > 0. (2.22)
Bp 0Bp

Further, by equations (2.16) and (2.1), we can express U, (ul) as
U () = [piXo, (Y)AS(Y) (z—y)dy + C, }
(uze(z) = frrxoL (W)AS(Y) (z—y)dy + C7),

where C), C'] are constants that are equal to zero if n>3. Sending R— « in (2.22),
by equations (2.23) and (2.1), we have limp_.e [yp, (U — Use) 1+ V(they — 1 )dS =0
for n>3. Thus, by (2.22) we obtain

(2.23)

— lim J IV (uly — U)|> dz> 0, (2.24)
By

R—x

which clearly implies that u ., can be different from ., at most by a constant. From
the last equation in (2.16), it follows that ul, = u, if n>3. Below, we show that the
same conclusion holds for n=2.

If n=2, by the last equation in (2.16), (2.23) and (2.1), we have

[, xo- 8oy = | xor )20y =—2m0Q (2.25)

and

oo (®) — e (2)| < [t () = gu(|2])] + |uce(2) = gu(l2])| <2C) VY |2[> R,
(2.26)

Therefore, again by equations (2.23) and (2.1) we have

o

IV[uw(w)—uio(w)HS? Vx> Ry, (2.27)
T

where C>0 is some constant independent of . From equations (2.26) and (2.27),

it is clear that, for n=2,

lim J (Uoo — Ut )11V (Usy — ube )dS = 0.
dBp

R—x

By sending R— « in equation (2.22), we again obtain equation (2.24), which
implies that u. can be different from u., at most by a constant. If this constant is
non-zero, one of the coincident sets Q., and Q. must be empty, which contradicts
equation (2.25) since @>0.

We remark that the uniqueness of the weak limit implies that the convergence
in equation (2.14) is in fact strong (see Rudin 1991). We summarize below.

Theorem 2.3. Consider the variational inequality problem (2.7) with an
obstacle ¢ specified as above. Define the limiting minimizer u. and coincident set
Qo as above. Then the interior of the coincident set Q, C By is an inclusion such
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that the overdetermined problem

Au = xqo AP a.e. on R",
VVu = VV¢ on Q,\0Q,,
(2.28)
Go
)~ ulla| < oy for a2 Ry
\

is solved by u= U, € WIQ(;ZO([R{"), which also satisfies

—Au>0, u>¢ and —Au(u—¢)=0 a.e.onBpV R>R,. (2.29)

Further, if there is a second u' € WIQ‘f(IR") that satisfies equation (2.29) and
(2.28), then u' = u.

We remark that the last equation in (2.28) assures that a solution of (2.28) is
the Newtonian potential (within an additive constant if n=2) induced by the
source xq, Ad.

3. Solutions to Eshelby conjectures

In this section we present the details of the proofs of theorems 1.2 and 1.3 and
examples of special inclusions in various senses. Both the proofs and examples
are derived from theorem 2.3.

(a) Proof of Eshelby conjecture II (theorem 1.2)

To prove theorem 1.2, by lemma 2.1, equation (2.5), we see that it is sufficient
to show that, if a connected inclusion Q with Lipschitz boundary is such that the
overdetermined problem

Au=—xgo on R",

VVu=Q on Q,

C n
‘u(w) - gn(lwm < "0_2 on R /\BR[)y
|z|

admits a solution u & Wiﬁ([R") for some Q€Ryy with Tr(Q)= —1, then Q
must be an ellipsoid.
From equations (2.1) and (3.1), we have

u(x) = —JRnXQ(y)T(m—y)dy + C, (3.2)
where ('is a constant that vanishes if n>3. By the divergence theorem, we have
J (VVu)* de = J VVuAu de. (3.3)

R" R"
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Since Q is bounded and Tr(Q)= —1, the Lh.s. of (3.3) is always a positive
definite matrix, which by the first two equations in (3.1) and (3.3) implies that
the matrix @ is negative definite. Further, since Q is a connected inclusion, there
exists a quadratic function

1
¢(x) = 5 (x—d) - Q(x—d) +h suchthat u(z)=¢(x) Ve, (3.4)
where d €R" and h €R.
We claim u>¢ on R". To show this, we note that 0Q being Lipschitz
continuous implies that, for any unit vector m € R",

m-Vu(z) = —JWXQ(y)m'VT(w—y)dy = LQT(w—y)m'n(y)dS(y),

where, in the last equality, we have used the fact V,I'(x —y)=—V,I'(x —y) and
the divergence theorem. Note that, above and subsequently, the gradient V is
taken with respect to « unless it is stated otherwise. Thus, m-Vu(z) is a single-
layer potential induced by a layer of charge with surface density m-n on 0Q.
By potential theory (see Kellogg (1929, p. 160) for a classic treatment or
Kenig (1994, p. 54) and references therein for a modern viewpoint), it can be
shown that

Vim-Vu(x)||sgor —V[m-Vu(z)]|sge- = [m n(z)|n(x) for ae x€0Q,

where 02" (0Q7) means the limiting values approached from outside (inside) Q.
Let v,, = m-[VV(u—¢)]m. By the second equation in (3.1) and (3.4), we have

U (T) a0+ = M- [VVu(x) — Qm|ag+ = [m-n(x)]*>0 forae z€03Q. (3.5)
Also, from the representation formula (3.2), it is clear that
V(@) = —m-Qm>0 as|z|— .

Direct calculations reveal that Av,,=0 on R"\Q. By the maximum principle
applied to vy, restricted to R"\Q, we conclude v, > 0 on R"\Q. Additionally, we
note that, for any y € R"\Q, there exist a point , € 0Q and a unit vector m such
that y is an endpoint of the segment {xy+ tm: 0< t < ¢y} CR™\Q. Therefore,
for w(t) = u(xy+ tm) —¢(xy+ tm) we have

2

w(0) =0, dz—it) =0 dstgt) (T4 tm)=0 VO<i<l, (3.6
where we have used the fact that u(z) € C*(R") (see Gilbarg & Trudinger 1983,
p. 54). By equation (3.6), we conclude w(ty) = u(y) — ¢(y) > 0. Thus, u € W;2(R")
satisfies the overdetermined problem (3.1) and equation (2.29) for the quadratic
function ¢ in (3.4).

Finally, from the explicit Newtonian potential uy € WIQO:]([R") induced by the
source — X, on an ellipsoidal inclusion Qf, (see the textbook of Kellogg (1929) for
n=3 and a paper of Shahgholian (1991) for n>2), it is known that, for the
quadratic function ¢(z)=1/2(x—d)- Q(z—d)+ h, there exists an ellipsoid,
appropriately positioned in the space, such that the Newtonian potential ug
induced by —yxg, satisfies (within an additive constant if n=2) the
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overdetermined problem (3.1) and equation (2.29) for the same obstacle as in
(3.4). By theorem 2.3, we conclude that up = v and Q = Qp, which completes our
proof of theorem 1.2.

(b) Proof of Eshelby conjecture I in two dimensions (theorem 1.3)

In two-dimensional space (n=2), Eshelby conjecture I is also true since it also
implies the overdetermined problem (3.1) admits a solution. To see this, let us
recall equations (1.2), (2.4) and (2.5). We will show equation (1.6) implies that
the Newtonian potential u of —xo satisfies VVu = const. on Q if n=2, and, so,
theorem 1.3 will follow by the same arguments as theorem 1.2, see §3a.

For any non-zero P € R®?, by choosing an appropriate coordinate system we

can write it as
a c
P = ,
—c b

where a? + b* + ¢ #0. There are two possibilities that need separate attention.

(i) If a# b, contracting p and 7 in (1.2), by equations (2.4) and (1.6), we have

—1
V(@ Pl = Gy + s 70 Jw

is constant for all x€Q, where gg(k, )= [pexp(ik-(z—a'))daz’. By the
inversion theorem, we also have

a(k); + b(k)5
|k

go(k, x)dk (3.7)

J ERE s o )k = J go(k, m)dk = 2m)xg(x).  (3.8)
T

Since a # b, (k)% for each 1=1, 2 can be written as a linear combination of
a(k)? + b(k)3 and (k)7 + (k)3. Thus,

k)?
J (|k?|)2t go(k,x)dk = const. onQ Vi=1,2, (3.9)
R’l

which, by equation (2.3), implies the Newtonian potential u induced by —xo
satisfies the Poisson equation (2.2) and

2
o) _ 4 V(o m) 0,
x
(3.10)
2
M =B V(z1,2,) €Q,
0z;

where A, BER are constants. Since u(z,z,) is an analytic function on the
inclusion Q, by direct integration we see equation (3.10) implies all components
of VVu(zy, z5) are uniform on Q. Thus, theorem 1.3 follows from theorem 1.2 and
lemma 2.1 if n=2 and a#b.
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(ii) If a=b, from equation (2.4), equations (1.2) and (1.6) imply

J [a(k)% +re(k)i(k)y  a(k)i(k)y + re(k)3 9ok, z) dk = const. on Q
Rn b

a(k)i(R)p —re(k)} a3 —re(k)i (k) | KT
where r= (u; + s + A)/pu;. Combined with equation (3.8), one can write them as

a rc 0
—r¢c a 0 (k)?
[ 0 a rc||(k)(k) wdk = const. on Q. (3.11)
" 0 —rc a (k:)% 14
1 0 1

Since r#0 and a® + ¢* #0, the rank of the 5X 3 matrix inside the integral (3.11)
is 3, which again implies equation (3.10). This fact and the arguments for the
previous case complete our proof for theorem 1.3.

(¢) Existence of multiply connected E-inclusions

To prove theorem 1.4, it is sufficient to show the existence of a multiply
connected inclusion @ such that the induced field Vo(z, I') in (1.2) is uniform on
Q. From lemma 2.1, this is equivalent to the existence of a multiply connected
E-inclusion Q such that the overdetermined problem (3.1) admits a solution in
Wiﬁ([R”) for some Q& Rggffﬁ with Tr(Q) = —1. We claim there are many other
non-ellipsoidal inclusions having this property. For reasons explained in Liu et al.
(submitted), we call such special inclusions E-inclusions. We remark that
E-inclusions include but are not limited to inclusions @ such that VVu in (2.3)
are uniform on Q (Liu et al. submitted).

To construct such a multiply connected E-inclusion, we consider piecewise
quadratic obstacles

b(z) = sup{%(:z:—di)- Qw—d) +h:i=1, N} (3.12)
where hy,....,hy €ER and di,...,dy €ER" are to be specified below. If the
symmetric matrices @ is negative definite, it is easy to verify that the obstacle
¢(x) defined in (3.12) satisfies all the conditions required by theorem 2.3 (see
Friedman 1982, p. 44, ex. 2). We then consider the variational inequality (2.7)
with the obstacle (3.12). From the discussions in §2, a limiting minimizer u. is
well defined and we denote by Q the interior of the coincident set
{x €ER" : up(x) = ¢(x)}. Theorem 2.3 implies that Q is an E-inclusion such
that the overdetermined problem (3.1) admits a solution in WIZO’?([R{"). We now
show that Q can be multiply connected if the parameters hq,...,hy €ER
and dy,...,dy €R" in (3.12) are chosen appropriately. For instance, let N=2,
hy=hy=1and d; = —d,. From ¢(d;) = ¢(d,) = 1 and the last equation in (2.28)
we see Q cannot be empty if n>3. If n=2, the constant @>0 in (2.9) and
equation (2.25) assure Q is non-empty. Note that VV¢ is unbounded on the plane
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Figure 1. A two-component E-inclusion such that the overdetermined problem (3.1) admits a
solution for Q= —diag(1.5,1)/2.5.

passing the origin and with normal d;. Thus, equation (2.10) implies Q cannot
intersect with this plane. From the symmetry of ¢, it can be seen that Q has two
components separated by this plane, and hence € is multiply connected
(figure 1). We have thus completed the proof of theorem 1.4.

It is interesting to see what these E-inclusions look like and how much they
resemble separate ellipsoids. So we consider the following numerical scheme to
solve the variational inequality (2.7). If the constraint u,> ¢ is neglected, the
Euler-Lagrange equation of the variational problem (2.7) is the familiar
boundary-value problem:

Au, =0 onB, and wu,=g,(r) ondBhB,.

According to the finite-element method (e.g. Kwon & Bang 2000), this boundary-
value problem can be discretized as

Ki=f, (3.13)

where 4, a column vector, denotes the values of the potential u, at the nodal
points in the finite-element model; and K and f are usually called the stiffness
matriz and loads, respectively. Now let us take into account the discretized
constraint %> ¢, where ¢ are the values of the obstacle ¢ at the nodal points.
Then the discrete version of the variational inequality (2.7) becomes the
following quadratic programming problem:

mln{é(ﬁ) = %ﬁ Kia+f-a: ﬁZ(ﬁ}, (3.14)
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which can be easily solved using standard solvers. The following computations
use a mesh in a unit circle or sphere (r=1) which is denser around the coincident
set and has a total of approximately 10° nodal points. The iterations are
terminated when the relative difference between the values G(u) of two
consecutive iterations is less than 10~ ', With these parameters, the iterations
converge within a few minutes on a personal computer. The resulting coincident
set Q, includes all nodal points on which |u— (f)| is less than aX 10~ %, where a is
of the order of 1. Since the convergence in (2.14) is in fact strong, presumably Q,
would be a good approximation of the limiting coincident set {z : u,(x) = ¢(x)}
if the boundary of Q,. is relatively far away from that of the unit ball B;. Such
properties of Q, can be realized by choosing small h; and |d;| in (3.12) for the
obstacle ¢.

If N=1 and @Q is a negative definite matrix in (3.12), by theorem 1.2 it is clear
that the coincident set should be ellipses/ellipsoids in two/three dimensions. The
numerical scheme is then verified by comparing the numerical results with the
corresponding ellipses/ellipsoids in two/three dimensions. Below we show three
examples of multiply connected E-inclusions such that the overdetermined
problem (3.1) admits a solution. The first two examples are calculated for the
obstacle ¢ in (3.12) in two dimensions. Figure 1 shows a two-component
E-inclusion such that the overdetermined problem (3.1) admits a solution
for @=—diag(1.5,1)/2.5. The parameters in (3.12) are chosen to be N=2,
d, =[0,0.05], dy =—d; and h; = hy = 0.02. If the parameters in (3.12) are chosen
to be N=5, Q@ =—diag(1,1)/2, d;= 0.05 X [cos(2i7/5),sin(2i7/5)] and h; = 0.025
for i=1,...,5, we obtain an E-inclusion with fivefold symmetry, as shown in
figure 2. This E-inclusion has five pedal-like components on which the second
gradient of the induced potential is equal to Q= —diag(1,1)/2, whereas the
potential is harmonic outside.

The third example is a three-dimensional E-inclusion such that the over-
determined problem (3.1) admits a solution for Q= —diag(1,1,1)/3 (figure 3).
Note that the mesh in this and following figures is not the actual mesh used in the
computation but is merely used for visualization. Other parameters in (3.12) are
N=2, d,=[0,0,0.1], dy=—d; and h;= hy=0.025. The E-inclusion has two
components which are symmetric about the plane {x : z3=0}. As shown in the
two-dimensional example in figure 2, the boundaries of the two components
become flatter as they come closer to each other. The front view of the lower
component is plotted separately in figure 4, which shows a pedal-like area.
According to symmetry, by rotating this area around the axis e3=[0,0, 1], we
will obtain the lower component in figure 3.

We remark that, by changing the parameters in (3.12), we can construct a
very large class of E-inclusions. The shapes, topology, the number of components
and the distances between various components of an E-inclusion can all be
adjusted (see Liu et al. (submitted) for more examples in a periodic setting).

(d) FEshelby conjecture I for n>3 (theorem 1.5)

We have shown that, with L specified by (1.3) and (1.4), Eshelby conjecture I
is valid if n=2 or n>3 and P=1, see theorem 1.3, theorem 1.2 and equations
(2.6) and (2.5). However, if n>3, Eshelby conjecture I may not be valid
depending on the tensor L and matrix P. Below, we construct a non-ellipsoidal

Proc. R. Soc. A (2008)



588 L. P. Liu

025

0.20 +
0.15}
0.10
0.05}
ol
-0.05 +

-0.10+
-0.15 ¢

Au=0
-0.20

s .. L
2025 020 -0.15-0.10-005 0 005 0.10 0.15 020 025

Figure 2. An E-inclusion with fivefold symmetry such that the overdetermined problem (3.1)
admits a solution for @ =—diag(1,1)/2.
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Figure 3. A two-component E-inclusion such that the overdetermined problem (3.1) admits a
solution with @ =—diag(1,1,1)/3, see figure 4 for front view.
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Figure 4. The front view of the lower component of figure 3.

inclusion @ C R® with smooth boundary having the property that
Vou(zx, P) = const. on Q for P = diag(1,0,0),

where Vu(z, P) is given by (1.2) and L is specified by (1.3) and (1.4) with
s + A=0. By equations (2.4) and (2.3), this is equivalent to the existence of a
non-ellipsoidal inclusion € with smooth boundary such that the Newtonian
potential u induced by —xo satisfying

0% u(x)

a.’L‘lﬂfZ‘

= const.on Q Vi=1,2,3. (3.15)

We use theorem 2.3 to construct such a domain in R®. We need to carefully
define our obstacle such that the second equation in (2.28) implies (3.15) without
the first one being violated. Let ¢ : R> > R be

3y, 2) = { Q log(z3 + x§)1/2 if (23 + x§)1/2 >1,
2y43) —
0 if (23 +23)1% <1,
and let ¢ : R® — R" be
1 R
$(z) ==l +(22=0)" + (5= )] + $(ma—bas—b) +h  (3.16)

where the constants @>0 and a,b,hER are to be determined. Direct
calculations reveal that, if a= —1, b=—-30Q/2, h and @ are appropriately chosen,
say h=-2.54 and =2, the obstacle ¢ defined in (3.16) enjoys the following
properties:

(i) ¢ satisfies all properties listed on p. 5,
(i) <0 on Uy={xER": (zo+ 3)*+ (23 + 3)* < 1},
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(iii) on U; :=={x €R": (5 + 3)? + (z3+ 3)*> 1}, we have A¢p= —1
2

VV¢(x) =—I/3 —i—p—l4 [(p° —2(zy + 3)7)e,®e, + (p* —2(z5 + 3)*)e; ey

+2(z9 + 3) (25 + 3)(e,Qe3 + e;®e,)], (3.17)

where p= \/(ac2 +3)2+ (z3+3)* and ey, ey, e; denote the unit vectors

which we use to define our rectangular coordinates &= (z1, x5, z3), and
(iv) ¢(0)=-2.54 —1/3+ 21og(3v/2) =0.017> 0, and on U}

Vop(x) =0 ifandonlyif =0 and VV¢(x)|,— is negative definite.

Therefore, the maximum of ¢(x) is attained only at 0.

We now apply theorem 2.3 with an obstacle defined in (3.16) satisfying all
conditions listed above. Immediately, we obtain the existence of a non-ellipsoidal
inclusion @ such that the Newtonian potential u induced by —xo satisfying

VVu =VV¢p on Q. (3.18)
That is, the overdetermined problem (2.28) admits a solution u € Wﬁf([ﬂ?) for
the obstacle ¢ in (3.16). Further, since ¢ is smooth restricted to {z : ¢(x) > 0}, it
can be shown that the coincident set has a smooth boundary (Friedman 1982,
ch. 2). From equations (3.17) and (3.18), we see 8°u(z)/dz,1; satisfy equation
(3.15) for i=1,2,3. This completes our proof of theorem 1.5.

The numerical scheme described in §3¢ can be used to calculate these
inclusions Q. Figure 5 shows such an example, which is calculated with the
obstacle (3.16). The parameters in (3.16) are chosen to be

h=-—254, a=-1, b=-3 and Q=2.

The inclusion in figure 5 might appear like an ellipsoid, but in fact it cannot be
an ellipsoid since not all components of VVu are uniform on the inclusion,
see equations (3.18) and (3.17). The three orthographic views are shown in figures
6-8. The view in figure 6 is from the direction e; or from the left-hand side of
figure 5 and shows approximately an ellipse. The views in figures 7 and 8 are from
the directions of e; and e or the r.h.s. and top of figure 5 and show approximately
circular areas. We are not aware of any kind of familiar geometry that can give
rise to three orthographic views as in figures 6-8. It is more or less like the shape
one would obtain by squashing a ball non-uniformly in e, e3 direction.

4. Summary and discussions

We have presented the solutions of the Eshelby conjectures interpreted in two
different senses. The method in the paper relies on two key observations: (i) for
tensors of form specified by (1.3), the vectorial equation (1.1) is solved by the
gradient of the Newtonian potential, see lemma 2.1, and (ii) solving the
variational inequality (2.7) can produce special inclusions such that a certain
overdetermined problem admits a solution. From the established theory about
variational inequalities, Eshelby conjecture II, restricted to connected Lipschitz
inclusions, follows from the uniqueness of the solution of the variational
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Figure 5. An inclusion whose Newtonian potential satisfies equations (3.18) and (3.17), and hence
(3.15). The three orthographic views are shown in figures 6-8.
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Figure 6. View of figure 5 from the e; direction.

inequality (2.7) for a given quadratic obstacle, whereas by choosing other kinds
of obstacles we are able to construct various special inclusions for which the
desired overdetermined problems admit solutions. A numerical scheme has been
implemented to calculate these special inclusions discussed above (figures 1-8).
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Figure 8. View of figure 5 from the e direction.

Note that, in view of equation (1.1), the preceding arguments can be extended
to tensors

(L/)piqj = (G)rp(G)sq(A)ik(A)jl(L)rkslv
by a linear transformation
tox =A"'z and v—ov =G 'y, (4.1)

where G, €R™" are invertible and L is of form (1.3). Further, through a
refined calculation on the inverse of the matrix (L),;,i(k)(k);, we can extend the
results to tensors that satisfy (m=n)

(L)pigs (R)i(k), (k) = klkl*(K), Y EkER", (4.2)
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for some k>0, see details in Liu et al. (submitted). The linear transformation (4.1)
can be again applied to general L of form (4.2) and further extend the applicability
of the preceding arguments. The reader is invited to formulate the precise
statements corresponding to theorems 1.2-1.5 for tensors L of these forms.

Finally, a few remarks are in order regarding other applications of the
variational inequality (2.7). First of all, in view of the applications of the Eshelby
solution (1957) for an ellipsoid in the theories of micromechanics, composites and
fracture mechanics, by theorem 1.4 we immediately extend these applications to
multiply connected E-inclusions as shown in figures 2 and 3 if the eigenstress is
dilatational and the matrix phase is isotropic. For instance, we can show that a
solution of the homogeneous Eshelby inclusion problem (1.1) also solves the
corresponding inhomogeneous Eshelby inclusion problem (Eshelby 1957; Liu
et al. submitted). By a similar argument as in Roitburd (1986), if the interfacial
energy is neglected, we can show that these multiply connected E-inclusions,
together with ellipsoids, are equilibrium shapes of inhomogeneous precipitates in
alloys under some hypotheses on the mismatch strain and material properties.
Moreover, if the problem of reducing the stress concentration around a hole in an
elastic body is considered, depending on the external loading, boundary
conditions and material properties, the variational inequality (2.7) with
appropriate obstacles can be used to determine the optimal shapes of the holes
with least stress concentration factors (Lipton 2005). A closely related property
of these optimal shapes in the context of composites, as shown in Liu et al.
(submitted), is that they attain the optimal Hashin—-Shtrikman bounds. In
conclusion, as illustrated by the solutions to the Eshelby conjectures, the
consideration of the variational inequality (2.7) can be useful in solving many
physical problems and in particular those problems in which the shapes of the
inclusions play an important role.

The author gratefully acknowledges the financial support of the US Office of Naval Research
through the MURI grant N00014-06-1-0730.
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