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a b s t r a c t

Using the orbital-free density functional theory as a model theory, we present an

analysis of the field theoretic approach to quasi-continuum method. In particular, by

perturbation method and multiple scale analysis, we provide a formal justification for

the validity of numerical coarse-graining of various fields in the quasi-continuum

reduction of field theories by taking the homogenization limit. Further, we derive the

homogenized equations that govern the behavior of electronic fields in regions of

smooth deformations. Using Fourier analysis, we determine the far-field solutions for

these fields in the presence of local defects, and subsequently estimate cell-size effects

in computed defect energies.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The quasi-continuum method has, in the past decade, become an important computational technique in the study of
defects in materials where a wide range of interacting length scales govern their behavior. The main idea behind the quasi-
continuum method is a seamless bridging between various length scales of interest by imposing kinematic constraints and
systematically coarse-graining away from the regions of interest. The quasi-continuum method was first proposed for
empirical interatomic potentials (Tadmor et al., 1996), where the energy of the system was expressed as a non-local sum
over the positions of atoms. The kinematic constraints on the positions of atoms—degrees of freedom in the formulation—

are imposed via an unstructured finite-element triangulation of representative atoms with full atomistic resolution in regions
of interest, for instance at the core of a defect, and rapidly coarse-graining away to capture the long-range elastic effects. Apart
from the kinematic constraints introduced on the degrees of freedom, further approximations are introduced to reduce the
computational complexity of the formulation. The differing nature of these approximations, which include invoking the
Cauchy–Born hypothesis in some regions of the model or introducing cluster summation rules in the spirit of numerical
quadratures, have resulted in many different formulations of the quasi-continuum method. We refer to Shenoy et al. (1999),
Knap and Ortiz (2001), Miller and Tadmor (2002), Shimokawa et al. (2004), Eidel and Stukowski (2009) and reference therein
for a comprehensive overview of the different formulations of the method. Recent investigations and numerical analysis of the
method (Shimokawa et al., 2004; E et al., 2006; Dobson and Luskin, 2008; Luskin and Ortner, 2009; Dobson et al., 2009) suggest
that these approximations can result in undesirable consequences, namely, lack of a variational structure, lack of stability and
consistency of the approximation schemes, and uncontrolled errors in some cases.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmps

Journal of the Mechanics and Physics of Solids

0022-5096/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jmps.2011.04.020

� Corresponding author.

E-mail address: vikramg@umich.edu (V. Gavini).

Journal of the Mechanics and Physics of Solids 59 (2011) 1536–1551



Author's personal copy

In a recent work (Gavini et al., 2007a) the quasi-continuum method was developed for electronic structure calculations
using orbital-free density functional theory (OFDFT). OFDFT, which is an approximation to the widely used Kohn–Sham
formulation of density functional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965), describes the ground-state
energy of the system as an explicit functional of electron density and is valid in materials systems whose electronic
structure is close to a free electron gas (cf. Parr and Yang, 1989; Wang and Teter, 1992; Smargiassi and Madden, 1994;
Wang et al., 1998, 1999 for a comprehensive overview). The quasi-continuum reduction of OFDFT was achieved using a
real-space local variational formulation, and a coarse-graining of the electronic fields and positions of atoms—degrees of
freedom in the formulation—through kinematic constraints imposed using nested finite-element triangulations. An
important difference in the mathematical structure of quasi-continuum formulation for OFDFT in comparison to empirical
interatomic potentials is that OFDFT is a local field theory as opposed to the non-local description of extended interactions
in empirical potentials. A local field formulation, as in the case of OFDFT, admits quadrature approximations to further
reduce the computational complexity without introducing the undesirable consequences characteristic of conventional
quasi-continuum formulations.

In the prequel to this article (Iyer and Gavini, 2011), we suggest a field formulation for commonly used interatomic
potentials, where the extended interactions in these potentials are reformulated into a local form by constructing partial
differential equations (PDEs) whose Green’s functions correspond to the kernels of the non-local interactions. We further
demonstrate that the quasi-continuum reduction of these field formulations is variational, a consistent numerical
approximation, and provides significantly better accuracy than previous formulations. Moreover, the field formulation
of interatomic potentials provides a unified framework where the quasi-continuum reduction is solely a numerical
approximation scheme irrespective of the field theory used to describe the system—density functional theory or field
theories that represent interatomic interactions.

In the quasi-continuum reduction of field theories (Iyer and Gavini, 2011; Gavini et al., 2007a), the various fields that
appear in the formulation are decomposed into predictor fields and corrector fields. The predictor fields are computed by
performing a periodic calculation using the Cauchy–Born hypothesis, and the corrector fields are subsequently computed
from the variational formulation. For smooth deformations which do not depend on the atomic-scale, Blanc et al. (2002)
show that the various fields are given, to the leading order, by a periodic calculation using the Cauchy–Born hypothesis.
Hence, in regions away from the defect-core it is expected that the predictor fields are good approximations to the fields.
Thus, the corrector fields are represented on a finite-element triangulation which is subatomic near the core and coarse-grains
away to become superatomic, and this constitutes the quasi-continuum reduction of field formulations.

The representation of the corrector fields on a coarse-grained triangulation is valid under the hypothesis that corrector
fields do not exhibit oscillations on the atomic-scale in regions away from a defect-core. In this work, we provide a formal
justification for this hypothesis. We conduct our analysis in the framework of OFDFT and latter comment on other field
theories. We first use the perturbation method to find the governing equations for the corrector fields corresponding to a
weak defect. While the defect plays the role of a source (forcing function), the coefficients of these governing equations are
given by the unperturbed (predictor) electronic fields. Further, since the unperturbed electronic fields oscillate at the
atomistic scale, which is much smaller than the macroscopic supercell and the considered perturbation associated with
the defect, we employ the multi-scale analysis (Cioranescu and Donato, 1999) to determine the behavior of corrector
electronic fields. In particular, we demonstrate that the corrector electronic fields to their leading order and first order are
independent of the lattice parameter, and hence do not exhibit atomic-scale oscillations. We further derive the
homogenized equations for the corrector fields that are given by a second-order linear system of PDEs. By Fourier
analysis, we find their Green’s functions explicitly, which show that the correctors fields in OFDFT, corresponding to
electrostatic potential and electron density, decay exponentially. Additionally, we compute their solutions for a situation
representative of a vacancy in an infinite crystal. Using these solutions, we analyze the cell-size effects arising from a
computation on a finite domain and estimate the domain size required for achieving chemical accuracy in vacancy
formation energy. Our results show that a cell-size of the order of 1000 atoms is required to attain a converged value for
the vacancy formation energy in aluminum, which is much larger than the cell-sizes that are commonly used in numerical
simulations. This estimate is in agreement with recent cell-size studies in Gavini et al. (2007a) and Radhakrishnan and
Gavini (2010). We further note that the cell-size effects are likely to be more significant for defects like dislocations where
the decay in electronic and elastic fields is much slower.

We remark that the limit considered in this analysis is the homogenization limit of the corrector fields, and not the
thermodynamic limit. The thermodynamic limit, which has been widely studied in the context of crystalline solids (Blanc
et al., 2002; Garcia-Cervera et al., 2007), describes the energy density of an infinite crystal undergoing a smooth
macroscopic deformation. The homogenization and thermodynamic limits result in different scalings for the predictor
fields, and an analysis similar to the one conducted in the present work using the thermodynamic limit is a challenging
open problem. Recent work by Cancés and Ehrlacher (2010) and Cancés et al. (2008) are the first efforts in studying the
thermodynamic limit of defects in crystalline solids. Interestingly, the exponential decay of the corrector electronic fields
away from a local defect, derived in the homogenization limit in the present work, is recovered in the special case of a
homogeneous host crystal in the thermodynamic limit (Cancés and Ehrlacher, 2010).

The remainder of this paper is organized as follows. In Section 2 we formulate OFDFT with Thomas–Fermi–Weizsacker
kinetic energy functionals, and present the problem definition and the assumptions made in this analysis. In Section 3 we
discuss the perturbation analysis of the corrector fields, and present the multi-scale analysis of these fields and derive the
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homogenized equations in Section 4. In Sections 5 and 6 we derive Green’s functions of the homogenized equations and
compute their solutions for a spherical defect representing a vacancy. In Section 7 we comment on the extension of this
analysis to other flavors of OFDFT which use non-local kernel energies and other field formulations representing empirical
interatomic potentials. We finally conclude in Section 8 providing an outlook.

2. Problem definition

Consider an infinite crystal with lattice points given by La ¼ aL and L¼ f
P3

i ¼ 1 niê i : n1,n2,n3 2 Zg, where a denotes the
lattice parameter and ê1,ê2,ê3 2 R

3 are the rescaled lattice vectors satisfying ê3 � ðê1 � ê2Þ ¼ 1. We refer to

Ua ¼
X3

i ¼ 1

atiêi : �
1

2
ot1,t2,t3o

1

2

( )

as the unit cell. Let Y0 ¼ ð�L,LÞ3 be a macroscopic supercell such that Z :¼ a=L51 and it overlaps with a large integer
number of unit cells. Further, let

U0 ¼
1

Z
Ua

be the macroscopic rescaled unit cell (comparable with the supercell Y0), Z be the charge at each nucleus measured in units
of electron charge, and y : Y0-Y be a smooth macroscopic deformation that carries a reference point x0 2 Y0 to a new
point yðx0Þ 2 Y . In this work we are interested only in macroscopic deformations. We assume that the positions of nuclei
are given by the Cauchy–Born rule, and hence the nuclear charge distribution in the deformed configuration is given by

byðxÞ ¼
X

x02La\Y0

Z ~dðx�yðx0ÞÞ,

where ~d represents the regularized charge distribution of a nucleus.
To present our ideas we consider the energy of a system described by OFDFT. We remark that the ideas presented here

are general and can be equally applied to any field theory, for instance, fields theories that describe empirical interatomic
potentials discussed in Iyer and Gavini (2011). In density functional theory, the energy of a material system is given by

Eðu,byÞ ¼ TsðuÞþExcðuÞþEHðuÞþEextðu,byÞþEzzðbyÞ, ð1Þ

where u denotes the square-root electron density, Ts denotes the kinetic energy of non-interacting electrons, Exc denotes
the exchange and correlation energies that account for the quantum mechanical effects, and EH, Eext, Ezz denote classical
electrostatic interaction energies between electrons and nuclei. In OFDFT, Ts is approximated by explicit functional forms of
electron density as opposed to the Kohn–Sham approach where it is computed exactly within the mean field approximation.
A simple choice for this approximation is the Thomas–Fermi–Weizsacker (TFW) family of kinetic energy functionals (Parr and
Yang, 1989):

TsðuÞ ¼ CF

Z
Y

u10=3dxþ
l
2

Z
Y
jruj2 dx, ð2Þ

where 0rlr1 is a parameter and CF ¼
3

10 ð3p
2Þ

2=3. More accurate kinetic energy functionals have been proposed in the past

decade which account for the linear response of a uniform electron gas. For clarity we postpone our analysis of these
functionals to Section 7. By choosing the Thomas–Fermi–Weizsacker functionals (2) for kinetic energy, and following the real-
space formulation of OFDFT proposed in Gavini et al. (2007b), we express the total energy of the system as

Eðu,f; byÞ ¼

Z
Y

f ðuÞþ
l
2
jruj2�

1

8p jrfj
2þðu2þbyÞf

� �
dx, ð3Þ

where f ðuÞ ¼ CFu10=3 and f denotes the trial electrostatic potential. In the above, we ignore exchange and correlation energies

and comment on them in Section 7. The ground state of ðf,u,yÞ is determined by the following min–max problem

Etotð0Þ :¼min
y2Y

EðyÞ :¼ min
u2Uðby Þ

max
f2H1

per ðYÞ
Eðu,f;byÞ

( )
, ð4Þ

where

Y :¼ fy 2 w : ry periodic in Y0g,

UðbyÞ :¼ u 2 H1
perðYÞ :

Z
Y
ðu2þbyÞ dx¼ 0,uZ0

� �
: ð5Þ

In the above definitions, w is a suitable function space that admits minimizers of EðyÞ. In this analysis, since our focus is to
derive and analyze the far-field behavior of the displacement and electronic fields, we restrict our attention to a local minimizer
of EðyÞ in Y.
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Let ðfy ,uyÞ be a solution of the min–max problem for a smooth deformation y 2 Y

EðyÞ ¼ Eðuy ,fy; byÞ ¼ min
u2Uðby Þ

max
f2H1

per ðYÞ
Eðu,f; byÞ: ð6Þ

The existence of a solution for the saddle point problem (6) can be established following the ideas in Gavini et al. (2007b),
where the analysis was carried out in a non-periodic setting with Dirichlet boundary conditions on a bounded domain. We
remark that the arguments in Gavini et al. (2007b) can be appropriately modified to the periodic setting, and these details
are not discussed in this article to maintain our focus on multi-scale analysis. We also refer to Lieb (1981) for results on the
existence and uniqueness of solutions for various flavors of OFDFT.

It is clear from definition (3) that, if ðfy ,uyÞ is a solution to the min–max problems in Eq. (6), so is ðfyþc,uyÞ for any
c 2 R. By the standard first-variation calculations it follows that there exists a solution to the min–max problem in Eq. (6),
denoted by ðfy ,uyÞ, satisfying

Dfyþ4pðu2
yþbyÞ ¼ 0 on Y ,

�lDuyþ f 0ðuyÞþ2uyfy ¼ 0 on Y ,

subject to uy 2 UðbyÞ, fy 2 H1
perðYÞ:

8>><
>>: ð7Þ

Note that, in the above equation, the Lagrangian multiplier associated with the constraint in Eq. (5)2 has been absorbed
into the electrostatic potential fy . Thus, the solution fy to problem (7) no longer allows an arbitrary additive constant
(cf. Catto et al., 1998 for further discussion on this point).

We now discuss the nature of the solution ðfy ,uyÞ to problem (7). First we assume a homogeneous deformation with
ry¼ F0 2 R

3�3 on Y0. Consider problem (7) on the deformed unit cell F0Ua

Dfþ4pðu2þbyÞ ¼ 0 on F0Ua,

�lDuþ f 0ðuÞþ2uf¼ 0 on F0Ua,

subject to :
R

F0Ua
ðu2þbyÞdx¼ 0, u,f 2 H1

perðF0UaÞ:

8>><
>>: ð8Þ

For f ðuÞ ¼ 3
10 ð3p

2Þ
2=3u10=3, Catto et al. (1998) have shown that the periodic extension of the solution to problem (8) with

respect to the period F0Ua, denoted by ðf�,u�Þ, is the solution to problem (7):

fyðxÞ ¼f�ðxÞ, uyðxÞ ¼ u�ðxÞ 8x 2 F0Y0: ð9Þ

For future convenience, we denote by

fpðF0,xÞ ¼f�ðZxÞ, upðF0,xÞ ¼ u�ðZxÞ, ð10Þ

where the subscript p signifies that x/ðfpðF0,xÞ,upðF0,xÞÞ are periodic with period equal to the rescaled unit cell F0U0. It is
worthwhile noticing that ðfp,upÞ are considered as being defined by the exact solutions to the unit cell problem (8)
through Eq. (10), instead of the solutions in the thermodynamic limit discussed in Blanc et al. (2002). By Eqs. (9) and (10),
we have

fy ¼fpðF0, ~xÞ, uy ¼ upðF0, ~xÞ, ð11Þ

where ~x ¼ x=Z denotes the fast variable in the subsequent homogenization calculation. We remark that, in Section 4,
Eqs. (11) and the fact that Z51 will be used to derive the homogenized equations that govern the far-field behavior of the
perturbations to electronic fields created by local defects. Further, we remark that the solution to problem (8) is also a
solution of the min–max problem

WðF0Þ :¼ min
u

max
f
�
Z

F0Ua

f ðuÞþ
l
2
jruj2�

1

8p jrfj
2þðu2þbyÞf

� �
dx ð12Þ

subject to the same constraints as in Eq. (8). Here and subsequently, �
R
Oð Þ ¼ ð1=volumeðOÞÞ

R
Oð Þ denotes the averaged value

of the integrand over the domain O. In terms of the solutions ðfp,upÞ to the unit cell problem, we define the following
quantities for future use:

aðF0Þ ¼ �
Z

F0U0

upðF0, ~xÞ d ~x, bðF0Þ ¼ �
Z

F0U0

fpðF0, ~xÞ d ~x,

gðF0Þ ¼ �
Z

F0U0

1

2
f 00ðupðF0, ~xÞÞ

� �
d ~xþbðF0Þ: ð13Þ

As in classical continuum mechanics, all the functions W ,a,b,g : R3�3-R satisfy the material frame indifference and
material symmetries

WðRF0Þ ¼WðF0Þ 8R 2 SOð3Þ & F0 2 R
3�3 with det F040,

WðF0HÞ ¼WðF0Þ 8H 2 GðF0Þ, ð14Þ
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where SO(3) consists of all rigid rotation matrices, GðF0Þ is the point group associated with the Bravais lattice F0L, and W

can be replaced by a,b,or g in Eq. (14). Eq. (14) can be verified directly from definitions (12) and (13).
We now consider the case when the deformation y has a smooth macroscopic deformation gradient F̂ : Y-R3�3 on the

current configuration

F̂ðxÞ ¼ Fðy�1ðxÞÞ 8x 2 Y , Fðx0Þ ¼ryðx0Þ 8x0 2 Y0: ð15Þ

A priori, for this case, we have no knowledge on the solution to (7). Since Z51, motivated by Blanc et al. (2002) we
hypothesize that the solution to (7) is given by

fyðxÞ ¼fpðF̂ðxÞ, ~xÞ, uyðxÞ ¼ upðF̂ðxÞ, ~xÞ ð16Þ

and the elastic energy is given by

EðyÞ ¼ Eðuy ,fy; byÞ ¼

Z
Y

WðF̂ðxÞÞ dx, ð17Þ

where ðfp,upÞ are defined by the exact solutions to the unit cell problem (8) through Eq. (10), and W : R3�3-R is the
elastic energy density on the deformed configuration Y given by Eq. (12).

The solution to the outer minimization problem (4) may not be unique, and throughout this work we will restrict our
attention to local minimizers that satisfy the Euler–Lagrange equation corresponding to the energy in Eq. (17), which is the
familiar equilibrium equation of elasticity

Div Sðry�Þ ¼ 0 on Y0, ð18Þ

where

½Sðry�Þ�pi ¼
@JW

@Fpi
ðry�Þ, JðFÞ ¼ detðFÞ:

Note that in Eq. (18), S is the first Piola–Kirchhoff stress and ½Div S�p ¼ @Spi=@x0i.

3. Perturbation analysis

We now consider the effect of defects on electronic fields ðf,uÞ. A defect breaks the lattice symmetry, which in effect is
a perturbation of the forcing term, by , in Eq. (7). Thus, we replace the forcing term in Eq. (7) by a small perturbation of by:
bey ¼ byþebc with e51 and consider bc to be a macroscopic perturbation which allows us to subsequently pass to the
homogenization limit in Section 4. If bc has a compact support, this perturbation can be interpreted as a weak local defect,
formed by slowly reducing the charges on the nuclei in a macroscopic region, in an otherwise perfect crystal undergoing a
smooth deformation. We are interested in calculating the influence of this perturbation (defect) on the ground state of
OFDFT and, in particular, on the total energy. As in Eq. (4), the ground state of the system is governed by

EtotðbcÞ :¼ min
y2Y

Eeðy;bcÞ :¼ min
u2Uðbey Þ

max
f2H1

per ðYÞ
Eðu,f; byþebcÞ

( )
: ð19Þ

Note that if bc¼0, i.e., the system is unperturbed, then Etotðbc ¼ 0Þ is equal to Etotð0Þ in Eq. (4).
We solve the above problem approximately by perturbation method. We first consider the inner min–max problem in

Eq. (19) for given y 2 Y. Let

fe
¼fyþefc 2 H1

perðYÞ, ue ¼ uyþeuc 2 UðbeyÞ ð20Þ

be the solutions, where ðfy ,uyÞ, the solutions to the unperturbed problem (7), are referred to as the predictor fields in the
quasi-continuum formulation, and ðfc ,ucÞ are referred to as the corrector fields (Gavini et al., 2007a). Inserting Eq. (20) into
Eq. (5)2, we obtain the charge neutrality constraintZ

Y
½2uyucþeu2

c þbc� dx¼ 0: ð21Þ

Inserting Eq. (20) into Eq. (3), we expand the energy as

Eðue,fe; byþebcÞ ¼ Eðuy ,fy; byÞþe
Z

Y
½f 0ðuyÞ�lDuyþ2uyfy�uc

n
þ

1

4pDfyþu2
yþby

� �
fcþbcfy

�
dxþe2E2ðuc ,fc ,y; bcÞþoðe2Þ

¼ Eðuy ,fy;byÞþe
Z

Y
bcfydxþe2E2ðuc ,fc ,y; bcÞþoðe2Þ, ð22Þ

where the second equality follows from the Euler–Lagrange equations in (7) for ðfy ,uyÞ, and

E2ðuc ,fc ,y;bcÞ ¼

Z
Y

1

2
f 00ðuyÞu

2
c þ

l
2
jrucj

2�
1

8p jrfcj
2þð2uyucþbcÞfcþfyu2

c

� �
dx: ð23Þ
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Neglecting oðe2Þ-terms in Eq. (22), by the inner min–max problem in Eq. (19) we arrive at the following min–max problem
for ðuc ,fcÞ:

E2ðy;bcÞ :¼ min
uc

max
fc

E2ðuc ,fc ,y; bcÞ ð24Þ

subject to the constraints (cf. Eq. (21))

fc 2 H1
perðYÞ, uc 2 H1

perðYÞ,

Z
Y
ð2uyucþbcÞ dx¼ 0: ð25Þ

We remark that the zeroth and first-order terms in Eq. (22) are absent in the min–max problem (24) since they are
independent of (fc ,uc). By the standard first-variation calculations, we show that the Euler–Lagrange equations for ðfc ,ucÞ

associated with the min–max problem (24) are

Dfcþ4pð2uyucþbcÞ ¼ 0 on Y ,

�lDucþðf 00ðuyÞþ2fyÞucþ2uyfc ¼ 0 on Y ,

(
ð26Þ

where, as in Eq. (7), we have absorbed into the potential fc the Lagrangian multiplier associated with the last constraint in
Eq. (25), which is a constant independent of x. We further notice that Eqs. (26) can be obtained by linearizing Eq. (7) near
the solutions ðfy ,uyÞ. We remark that although the perturbation analysis was conducted under the assumption of weak
local defects, the perturbation expansion given by Eq. (20) is a reasonable assumption in regions away from defects that
are not necessarily weak. This follows as the perturbations in electronic fields decay away from the defect-core due to the
elliptic nature of the PDEs, and the governing equations for corrector fields will subsequently be valid in these regions.

4. Homogenization

We now turn towards establishing certain properties of the corrector fields which play a fundamental role in the
construction of quasi-continuum reduction of field formulations proposed in Gavini et al. (2007a) and Iyer and Gavini
(2011), and provide a formal mathematical justification for the method. Before proceeding to details, we notice the
following useful identity. Let f ðx, ~xÞ be a smooth function which is periodic in the second variable ~x with period F̂ðxÞU0.
If Z51, we have the identity (cf. e.g. Cioranescu and Donato, 1999, Chapter 2),Z

Y
f x,

x

Z

� �
dx¼

Z
Y
�
Z

F̂ðxÞU0

f ðx, ~xÞ d ~x dxþoð1Þ: ð27Þ

Since the unperturbed solutions ðfy ,uyÞ given by Eq. (16) oscillate at the atomic scale-a, presumably the corrector field
solutions (fc ,uc) to the governing equations in (26) oscillate at the a-scale as well. In this section, we determine the order
of this a-scale oscillation in the corrector fields (fc ,uc) and whether this atomic-scale oscillation is important to the leading
order in energy. Further, we determine the homogenized equations that govern the macroscopic behavior of these
corrector fields. To this end, following the method of the multiple scale expansions, we assume

fcðxÞ ¼f0
c ðx, ~xÞþZf1

c ðx, ~xÞþ . . . ,

ucðxÞ ¼ u0
c ðx, ~xÞþZu1

c ðx, ~xÞþ . . . ,

(
ð28Þ

where ~x ¼ x=Z is the fast variable, fi
cðx, ~xÞ, ui

cðx, ~xÞ (i¼ 0,1, . . .) are assumed to be periodic in the fast variable ~x with period
F̂ðxÞU0. Replacing ðfy ,uyÞ by the right hand side of Eq. (16), we rewrite E2 in Eq. (23) as

E2ðuc ,fc ,y; bcÞ ¼

Z
Y

1

2
f 00ðupÞþfp

� �
u2

c þ
l
2
jrucj

2�
1

8p jrfcj
2þð2upucþbcÞfc

� �
dx: ð29Þ

Inserting the multiple scale expansion (28) into Eq. (29), we have

E2ðuc ,fc ,y; bcÞ ¼

Z
Y

1

2
f 00ðupÞþfp

� �
ðu0

c Þ
2
þ
l
2

1

Z
r ~x u0

c þrxu0
c þr ~x u1

c

����
����
2

"

�
1

8p
1

Z
r ~xf

0
c þrxf

0
c þr ~xf

1
c

����
����
2

þð2upu0
c þbcÞf

0
c

#
dxþOðZÞ

¼
1

2Z2

Z
Y
ljr ~x u0

c j
2�

1

4p jr ~xf
0
c j

2

� �
dxþ

1

Z

Z
Y
lr ~x u0

c � ðrxu0
c þr ~x u1

c Þ�
1

4pr ~xf
0
c � ðrxf

0
c þr ~xf

1
c Þ

� �
dx

þ

Z
Y

1

2
f 00ðupÞþfp

� �
ðu0

c Þ
2
þ
l
2
jrxu0

c þr ~x u1
c j

2

�
�

1

8p
jrxf

0
c þr ~xf

1
c j

2þð2upu0
c þbcÞf

0
c

�
dxþOðZÞ: ð30Þ

We neglect the higher order terms of OðZÞ in Eq. (30). Since Z51, we consider the min–max problem (24) first for the
leading 1=Z2-terms in Eq. (30), which is given by

min
u0

c

max
f0

c

Z
Y
ljr ~x u0

c j
2�

1

4p jr ~xf
0
c j

2

� �
dx:
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It is clear that a solution to the above problem necessarily satisfies

r ~x u0
c ðx, ~xÞ ¼ 0 and r ~xf

0
c ðx, ~xÞ ¼ 0, ð31Þ

which means that f0
c ðx, ~xÞ and u0

c ðx, ~xÞ are independent of the fast variable ~x and hence can be rewritten as

u0
c ðx, ~xÞ ¼ u0

c ðxÞ and f0
c ðx, ~xÞ ¼f0

c ðxÞ: ð32Þ

This shows that the leading order terms in the corrector fields do not exhibit atomic-scale oscillations, and thus the
corrector fields can be resolved accurately on length scales larger than the lattice parameter. This key result formally
justifies the coarse-graining of corrector fields introduced in the quasi-continuum reduction of field theories.

Further, in account of Eq. (31), the 1=Z-terms on the right hand side of Eq. (30) vanish. Finally, we consider the
1=Z0-order terms on the right hand side of Eq. (30) which represent the leading order terms in the multiple scale
expansion of E2. Using Eq. (27) we can rewrite Eq. (30) as

E2ðuc ,fc ,y;bcÞ �

Z
Y
�
Z

F̂ðxÞU0

l
2
jrxu0

c j
2�

1

8p
jrxf

0
c j

2

� �
d ~x dx

þ

Z
Y
�
Z

F̂ðxÞU0

1

2
f 00ðupðF̂ðxÞ, ~xÞþfpðF̂ðxÞ, ~xÞ

� �
ju0

c j
2þ2upðF̂ðxÞ, ~xÞu

0
cf

0
c þbcf

0
c

� �
d ~x dx

þ

Z
Y
�
Z

F̂ðxÞU0

l
2
ð2rxu0

c þr ~x u1
c Þ � r ~x u1

c�
1

8p
ð2rxf

0
c þr ~xf

1
c Þ � r ~xf

1
c Þ

� �
d ~x dx: ð33Þ

Since u1
c ðx, ~xÞ and f1

c ðx, ~xÞ are periodic on F̂ðxÞU0 for every x, from Eq. (32) we haveZ
F̂ðxÞU0

rxu0
c � r ~x u1

c d ~x ¼ 0 and

Z
F̂ðxÞU0

rxf
0
c � r ~xf

1
c d ~x ¼ 0 8x 2 Y : ð34Þ

From the min–max problem (24), we maximize the expression in Eq. (33) over admissible f1
c and minimize it over

admissible u1
c , and obtain

r ~x u1
c ðx, ~xÞ ¼ 0 and r ~xf

1
c ðx, ~xÞ ¼ 0: ð35Þ

Thus, it follows that the corrector fields do not exhibit atomic-scale oscillations up to the second-order terms in the
multiple scale expansion (28). Further, from Eq. (35), the last term on the right hand side of Eq. (33) vanishes, and by
Eqs. (13) and (32) we identify the first two terms in Eq. (33) asZ

Y

l
2
jrxu0

c j
2�

1

8p
jrxf

0
c j

2þgðF̂ðxÞÞju0
c j

2þ2aðF̂ðxÞÞu0
cf

0
c þbcf

0
c

� �
dx ¼: E0

2ðu
0
c ,f0

c ,y; bcÞ, ð36Þ

where the g and a are defined in Eq. (13). In conclusion, from the min–max problem in Eq. (24), assuming the multiple
scale expansion given by Eq. (28), and keeping only the leading order terms, we have

E2ðy; bcÞ �min
u0

c

max
f0

c

E0
2ðu

0
c ,f0

c ,y; bcÞ ð37Þ

subject to

f0
c 2 H1

perðYÞ, u0
c 2 H1

perðYÞ,

Z
Y
ð2aðF̂ðxÞÞu0

c þbcÞ dx¼ 0, ð38Þ

where the constraint on u0
c follows from Eqs. (25), (13), and neglecting higher order terms in Eq. (28). Eqs. (37)–(38)

constitute the governing equations for the corrector fields in their leading order.
We now proceed to derive the governing equations that describe the elastic response of the defect. From Eqs. (22) and

(37) we see that Ee : Y-R defined in Eq. (19) is given by

Eeðy; bcÞ ¼ Eðuy ,fy ,byÞþe
Z

Y
bcfydxþe2E2ðy; bcÞþoðe2Þ

¼

Z
Y

WðF̂ðxÞÞdxþe
Z

Y
bcfydxþe2E2ðy; bcÞþoðe2Þ, ð39Þ

where in the second equality we have used Eq. (17) for Eðuy ,fy ,byÞ. Let y� : Y0-Y be the unperturbed minimizer of the
outer minimization problem in (4),

F�ðx0Þ ¼rx0
y�ðx0Þ 8x0 2 Y0, F̂

�
ðxÞ ¼ F�ðy��1ðxÞÞ 8x 2 Y

and, parallel to Eq. (20), let

ye ¼ y�þeyc ð40Þ

with ye 2 Y being the minimizer of the outer minimization problem in (19). As we are interested in the elastic fields
created in response to the perturbation bc, and not the configurational force on bc, we hold the pull back of bc on to the
reference configuration fixed. To this end, we define ~bcðx0Þ ¼ bcðy�ðx0ÞÞ,8x0 2 Y0 as the pull back before introducing
the perturbation in the deformation field. Subsequently, for any infinitesimal perturbation of the deformation given by
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Eq. (40), bc in the current configuration is given by bcðxÞ ¼ ~bcðye
�1
ðxÞÞ8x 2 Y . Further, let

Feðx0Þ ¼rx0
yeðx0Þ 8x0 2 Y0, F̂

e
ðxÞ ¼ Feðye

�1

ðxÞÞ 8x 2 Y

and

½Cðrx0
y�Þ�piqj :¼

@2JW

@Fpi @Fqj
ðrx0

y�Þ, ½Bðrx0
y�Þ�pi :¼

@Jb
@Fpi
ðrx0

y�Þ: ð41Þ

Since Z
Y

WðF̂
e
ðxÞÞ dx¼

Z
Y0

JðFeðx0ÞÞWðF
e
ðx0ÞÞ dx0

we haveZ
Y

WðF̂
e
ðxÞÞ dx¼

Z
Y0

Jðrx0
y�ÞWðrx0

y�Þ dx0þe
Z

Y0

rx0
yc � Sðrx0

y�Þ dx0þe2

Z
Y0

1

2
rx0

yc � Cðrx0
y�Þ � rx0

ycdx0þoðe2Þ: ð42Þ

Further, by Eqs. (27) and (13) we haveZ
Y

bcfye dx�

Z
Y

bcðxÞ �
Z

F̂
e
ðxÞU0

fpðF̂
e
ðxÞ, ~xÞ d ~x dx¼

Z
Y0

~bcðx0ÞJðF
e
ÞbðFeÞ dx0

¼

Z
Y0

~bcðx0ÞJðry�Þbðry�Þ dx0þe
Z

Y0

~bcðx0Þrx0
yc � Bðry�Þ dx0þoðeÞ

�

Z
Y

bcfy� dxþe
Z

Y0

~bcrx0
yc � Bðry�Þ dx0: ð43Þ

Replacing y in Eq. (39) by ye given by Eq. (40), expanding and keeping terms up to e2, by Eqs. (42) and (43) we obtain

Eeðy�þeyc; bcÞ �

Z
Y0

Jðrx0
y�ÞWðrx0

y�Þ dx0þe
Z

Y0

rx0
yc � Sðrx0

y�Þdx0þe
Z

Y
bcfy� dx

þe2

Z
Y0

1

2
rx0

yc � Cðrx0
y�Þ � rx0

ycþ
~bcrx0

yc � Bðrx0
y�Þ

� �
dx0þe2E2ðy

�; bcÞþoðe2Þ: ð44Þ

Since y� is a local minimizer satisfying Eq. (18), it follows that
R

Y0
rx0

yc � Sðrx0
y�Þ dx0 ¼ 0. We further neglect oðe2Þ-term in

Eq. (44). Finally, the outer minimization problem given by Eq. (19) reduces to a minimization problem on yc and is given by

EelðbcÞ :¼ min
yc2Y

Z
Y0

1

2
rx0

yc � Cðrx0
y�Þrx0

ycþ
~bcrx0

yc � Bðrx0
y�Þ

� �
dx0: ð45Þ

Thus, a minimizer yc satisfies the following Euler–Lagrange equation which constitutes the governing equation for the
elastic response in the presence of a defect

Div Cðrx0
y�Þrx0

ycþ
~bcBðrx0

y�Þ
h i

¼ 0 on Y0: ð46Þ

An important quantity in the study of defects is the defect formation energy, which is defined as the excess energy in
the system with a defect measured from a reference state of a perfect crystal consisting of same number of particles—in
this case the number of electrons and nuclei. In the framework of the present study, it is given by

EdðbcÞ :¼ ½EtotðbcÞ�Etotð0Þ�e
Z

Y
bcfy�dx�=e2:

From the previous discussions, the defect formation energy (defect energy) can be expressed, to the leading order, as the
following min–min–max (saddle point) problem:

EdðbcÞ �min
yc

min
u0

c

max
f0

c

Z
Y0

1

2
rx0

yc � Cðrx0
y�Þrx0

ycþ
~bcrx0

yc � Bðrx0
y�Þ

� �
dx0

þ

Z
Y

gðF̂
�
Þju0

c j
2þ

l
2
jrxu0

c j
2�

1

8p jrxf
0
c j

2þ2aðF̂
�
Þu0

cf
0
c þbcf

0
c g dx

�
ð47Þ

subject to

f0
c 2 H1

perðYÞ, u0
c 2 H1

perðYÞ,

Z
Y
ð2aðF̂

�
Þu0

c þbcÞ dx¼ 0, yc 2 Y: ð48Þ

Associated with the above min–min–max problem, the Euler–Lagrange equations are the elasticity equation (46) for yc on
the reference configuration Y0 and

Df0
c þ4p½2aðF̂

�
Þu0

c þbc� ¼ 0 on Y ,

�lDu0
c þ2gðF̂

�
Þu0

c þ2aðF̂
�
Þf0

c ¼ 0 on Y

8<
: ð49Þ

V. Gavini, L. Liu / J. Mech. Phys. Solids 59 (2011) 1536–1551 1543



Author's personal copy

for ðf0
c ,u0

c Þ on the current configuration Y . Note that the elasticity problem (46) for yc is not coupled with the equations for

ðf0
c ,u0

c Þ. In terms of the solutions ðyc ,f0
c ,u0

c Þ to Eqs. (46) and (49), the defect energy can be written as

EdðbcÞ �
1

2

Z
Y0

~bcryc � Bðry�Þþ
1

2

Z
Y

bcf
0
c : ð50Þ

5. Far fields

In this section we determine the far-field behavior of the fields ðf0
c ,u0

c ,ycÞ from the governing equations in (49) that will

aid in determining the optimal coarse-graining rates for these fields. In this analysis, we assume bc is continuous, bounded
and supported within the ball Br0

¼ fx : jxjrr0g. Although the analysis in the previous section was performed on the

supercells Y0 and Y , we note that the results of the analysis are independent of the supercells and thus to determine the

asymptotic behavior of the corrector fields we assume Y0 ¼ Y ¼R3. We first calculate the far-field behavior of ðf0
c ,u0

c Þ for a

homogeneous deformation with rx0
y� ¼ F0 2 R

3�3 on R3. In this case, F̂
�
¼ F0 on R3 as well; Cðrx0

y�Þ, Bðrx0
y�Þ, aðF̂

�
Þ, gðF̂

�
Þ

are constants on R3 and we drop their dependence on F0 in notation. Further, the periodic boundary conditions in Eq. (48)

shall be replaced by appropriate decay conditions at the infinity. Dropping the subscript c and superscript 0 in ðf0
c ,u0

c ,ycÞ in

Eqs. (49) and (46), we rewrite our problem for (f,u,y) as

Dfþ4pð2auþbcÞ ¼ 0 on R3,

�lDuþ2guþ2af¼ 0 on R3,

Div½Crx0
yþbcðF0x0ÞB� ¼ 0 on R3,

8>><
>>: ð51Þ

subject to

jfðxÞj,juðxÞj,jyj-0 as jxj-þ1,

Z
R3
ð2auþbcÞ ¼ 0: ð52Þ

We now address the solutions of the first two of Eq. (51). Taking Laplacian of Eq. (51)2 and inserting into Eq. (51)1, we obtain

DDu�
2

l21
Duþ

1

l40
u¼ b on R3, ð53Þ

where l040, Reðl1ÞZ0,

1

l21
¼
g
l

,
1

l40
¼

16pa2

l
40, b¼�

8pabc

l
: ð54Þ

The constants l1, l0 determine the asymptotic behavior of the fundamental solution at the infinity. Since Eq. (53) is
linear, we express its solution as

uðxÞ ¼ ðEu�bÞðxÞ ¼
Z
R3

Euðx�x0Þbðx0Þ dx0, ð55Þ

where Eu is the fundamental solution satisfying

DD�
2

l21
Dþ

1

l40

 !
Eu ¼ dð0Þ

and dð0Þ is the Dirac distribution. We find the fundamental solution Eu by Fourier analysis. Solving the algebraic equation

x4þ
2

l21
x2þ

1

l40
¼ 0 ð56Þ

we obtain two roots k7 with Imðk7 ÞZ0 and satisfying

k2
7 ¼�

1

l21
7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l41
�

1

l40

s
: ð57Þ

The two other roots with Imðk7 Þo0 are discarded as they will correspond to exponentially growing solutions in ðu,fÞ,
defined subsequently, and do not satisfy the decay conditions imposed in (52). By Fourier analysis, we have

EuðxÞ ¼
1

ð2pÞ3

Z
R3

1

jkj4þ
2

l21
jkj2þ

1

l40

expðik � xÞdk¼
1

ð2pÞ3

Z
R3

1

ðk2
þ�k2

�Þ

1

jkj2�k2
þ

�
1

jkj2�k2
�

" #
expðik � xÞ dk: ð58Þ

We are therefore motivated to consider the fundamental solution of the operator

ðDþk2ÞG¼ dð0Þ ð59Þ
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for some k 2 C with ImðkÞZ0. By the standard method (cf. Jackson, 1999, p. 243), we have

Gðx,kÞ ¼
�

expðikjxjÞ
4pjxj

if ImðkÞa0,

�A
expðikjxjÞ

4pjxj
�B

expð�ikjxjÞ
4pjxj

if ImðkÞ ¼ 0,

8>>><
>>>:

ð60Þ

where AþB¼1. In Fourier space, Eq. (59) can be rewritten as

Gðx,kÞ ¼ 1

ð2pÞ3

Z
R3

�1

jkj2�k2
expðik � xÞ dk: ð61Þ

If jl1jal0, i.e., k2
þak2

�, from Eqs. (58)–(61) we have

EuðxÞ ¼
�1

ðk2
þ�k2

�Þ
½Gðx,kþ Þ�Gðx,k�Þ�: ð62Þ

If jl1j ¼ l040, i.e., k2
þ ¼ k2

� ¼�1=l21, sending kþ to k� in Eq. (62) we obtain

EuðxÞ ¼

�1

2k @kGðx,kÞ ¼ l0
8pexpð�jxj=l0Þ if g40, k¼ i=l0,

�1

2k
@kGðx,kÞ ¼ iAl0

8p
expðijxj=l0Þþ

iBl0
8p

expð�ijxj=l0Þ if go0, k¼ 1=l0:

8>><
>>: ð63Þ

Further, by the second of Eq. (51), the associated potential is given by

fðxÞ ¼
l

2a
Du�

g
a

u¼

Z
R3

Efðx�x0Þbðx0Þ dx0, ð64Þ

where

EfðxÞ ¼
l

2a DEuðxÞ�
2

l21
EuðxÞ

" #
: ð65Þ

We remark that the above formal calculations can be rigorously justified (cf. e.g. Rudin, 1991, Chapter 7).
Note that the last of Eq. (52) requiresZ

R3

1

l40
u�b

 !
¼ 0: ð66Þ

If
R

bðxÞ dxa0 and bðxÞ has a compact support in a ball around the origin, then for large jxj the solution uðxÞ is well
approximated by Green’s function Eu in Eq. (62), which is not integrable if k7 are real numbers as

R
R3 ðexpðikjxjÞ=jxjÞ dx is

not integrable for real k. We therefore conclude that k7 should be both non-real numbers. This is possible for the
following three cases:

1. g40 and l04 l1. In this case, all roots of Eq. (56) are pure imaginary. By Eqs. (62) and (65), we have

EuðxÞ ¼
1

4pðk2
þ�k2

�Þjxj
½expðikþ jxjÞ�expðik�jxjÞ�,

EfðxÞ ¼
1

4pðk2
þ�k2

�Þjxj
½Cþ expðikþ jxjÞ�C�expðik�jxjÞ�, ð67Þ

where

C7 ¼
l

2a
�k2

7�
2

l21

 !
¼

l
2a

k2
8 : ð68Þ

2. g40 and l0¼ l1. This is the first case in Eq. (63) and we have

EuðxÞ ¼
l0
8p

expð�jxj=l0Þ, EfðxÞ ¼
�l

16pa
1

l0
þ

2

r

� �
expð�jxj=l0Þ: ð69Þ

3. l0o jl1j. In this case, all roots of Eq. (56) are non-real and the fundamental solutions are given by (67) as well.

To verify the constraint (66), we integrate Eq. (53) on the ball BN with radius N, and by the divergence theorem we arrive atZ
@BN

rDu�
2

l21
ru

 !
� x̂ dSþ

Z
BN

1

l40
u�b

 !
dx¼ 0, ð70Þ
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where x̂ ¼ x=jxj. Sending N-þ1, we arrive at Eq. (66) since the first term in the above equation vanishes for expressions
in Eqs. (67) or (69).

Finally, we remark that the solution to the last of Eq. (51) is given by the classic theory of linear elasticity (cf. e.g. Mura,
1987, Chapter 1).

Eqs. (55), (64), (67)–(69) and the theory of elasticity determine the far-field behavior of ðu,f,yÞ, where the perturbation
bc plays the role of a source. For a continuous bounded bc supported within the ball Br0

¼ fx : jxjor0g, we have that for
some R40 and some C,k40,

juðxÞjrCexpð�kjxjÞ, jfðxÞjrCexpð�kjxjÞ, jyðx0Þjr
C

jxj2
8jxj4R: ð71Þ

With the above estimates on the far-fields, we continue our solutions to Eqs. (51)–(52) for a particular example in the next
section.

6. Defect energy and cell-size effects

In this section we study how the defect energy depends on the size of the supercell. For simplicity, we assume that the
supercell is the ball BR0

¼ fx : jxjoR0g, the coefficients l04 l140 and thus both the roots k7 in Eq. (57) are pure imaginary
numbers. We denote by

k7 ¼�ik7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l21
8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l41
�

1

l40

svuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2�4a2l

p
l

s
40: ð72Þ

Below we solve Eqs. (51) for the corrector fields ðu,f,yÞ with

bðxÞ ¼
r if jxjrr0,

0 if jxj4r0,

(

where r 2 R is a constant, r0oR0 describes the length scale of the defect representative of a vacancy. We apply the
Dirichlet boundary condition

uðxÞ ¼ 0, fðxÞ ¼
l

2aDuðxÞ�
g
auðxÞ ¼ B, y¼ 0 on @BR0

, ð73Þ

where B 2 R is a constant determined by the constraint (66).
We first consider the electrostatic contribution of the defect energy, i.e., the second term on the r.h.s. of Eq. (50). By

symmetry, we have u¼u(r) with r¼ jxj. Therefore, Eq. (53) can be rewritten as

d4

dr4
ru�

2

l21

d2

dr2
ruþ

1

l40
ru¼ rb 80o jxjoR0:

From the theory of ordinary differential equation, we obtain

ruðrÞ ¼

rrl40þC1expðkþ rÞþC2expðk�rÞ

þC3expð�kþ rÞþC4expð�k�rÞ if rrr0,

C5expðkþ rÞþC6expðk�rÞ

þC7expð�kþ rÞþC8expð�k�rÞ if rZr0,

8>>>><
>>>>:

where the constants Ci (i¼ 1, . . . ,8) are determined by the analyticity of uðxÞ at r¼0 (which implies C1þC3¼0 and
C2þC4¼0), the continuities of ðdm=drm

ÞðruÞ for m¼0,1,2,3 at r¼r0, the boundary condition (73) and the constraint (66).
Direct calculations reveal that these conditions imply

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

aðr0,0Þ �aðr0,0Þ

aðr0,1Þ �aðr0,1Þ

aðr0,2Þ �aðr0,2Þ

aðr0,3Þ �aðr0,3Þ

0 0 0 0 aðR0,0Þ

0 0 0 0 R0aðR0,3Þ�aðR0,2Þ

� 2
l2
1

R0aðR0,1Þþ 2
l2
1

aðR0,0Þ

2
666666666666666664

3
777777777777777775

C1

C2

C3

C4

C5

C6

C7

C8

2
666666666666664

3
777777777777775

¼

0

0

�rr0l40
�rl40

0

0

0

0

2
66666666666664

3
77777777777775

, ð74Þ

where the 1�4 row vector aðr,mÞ is given by

aðr,mÞ ¼ ½km
þ expðkþ rÞ,km

�expðk�rÞ,ð�kþ Þ
mexpð�kþ rÞ,ð�k�Þ

mexpð�k�rÞ�:
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Note that the last row of Eq. (74) follows from setting the ball BN to be BR0
in Eq. (70) and the constraint (66). Further, from

Eq. (64) we have

rfðrÞ ¼
l

2a
d2

dr2
ru�

g
a ru

and hence

rfðrÞ ¼
�
rgl
4a3

rþCþC1½expðkþ rÞ�expð�kþ rÞ�þC�C2½expðk�rÞ�expð�k�rÞ� if rrr0,

CþC5expðkþ rÞþC�C6expðk�rÞþCþC7expð�kþ rÞþC�C8expð�k�rÞ if r4r0,

8<
: ð75Þ

where, by Eqs. (68) and (72), C7 ¼�lk2
8 =2a. Therefore, the electrostatic contribution to the defect energy is given by

Ees
d ðR0Þ :¼

1

2

Z
R3
�

l
2a

b

� �
f¼
�l
4a

�pglrr3
0

3a3
þCþC1

8p½kþ r0coshðkþ r0Þ�sinhðkþ r0Þ�

k2
þ

�
þC�C2

8p½k�r0coshðk�r0Þ�sinhðk�r0Þ�

k2
�

�
:

ð76Þ

We remark that the algebraic equations (74) determine the constants ½C1, . . . ,C8� uniquely. Analytical expressions of
these constants are desirable but impractical to write them down. In the limit R0-þ1, we find

C1 ¼
rl40k2

�ð1þkþ r0Þexpð�kþ r0Þ

2kþ ðk2
þ�k2

�Þ
, C2 ¼

�rl40k2
þ ð1þk�r0Þexpð�k�r0Þ

2k�ðk2
þ�k2

�Þ
, C5 ¼ C6 ¼ 0,

C7 ¼
rl40k2

�½kþ r0coshðkþ r0Þ�sinhðkþ r0Þ�

kþ ðk2
þ�k2

�Þ
, C8 ¼

rl40k2
þ ½k�r0coshðk�r0Þ�sinhðk�r0Þ�

k�ðk2
þ�k2

�Þ
: ð77Þ

For general cases with finite R0, which represent computations on a finite simulation cell, we resort to numerical
solutions. In particular, we are interested in estimating the error incurred in the defect energy from using a simulation cell,
and its dependence on the cell-size. To this end, we have conducted a periodic calculation on a unit cell of FCC lattice for
aluminum using a real-space formulation for OFDFT and a finite-element discretization of the formulation (Gavini et al.,
2007b). In our simulation, we used the TFW family of kinetic energy functionals with l¼ 1

6 and a modified form of
Heine–Abarenkov pseudopotential for aluminum (Goodwin et al., 1990). We subsequently estimate the constants a,b,g
from our numerical calculations to be

a¼ 0:1629 a:u:, b¼�0:0509 a:u:, g¼ 0:9449 a:u:

We now estimate the cell-size effects in the electrostatic contribution to the energy of a defect that is representative of a
vacancy. A reasonable choice for the length scale of a vacancy is r0 ¼ a0=

ffiffiffi
2
p

, corresponding to the nearest neighbor
distance in a face-centered cubic lattice, where a0 is the lattice parameter for aluminum which is computed to be 7.5 a.u.
Using Eqs. (74)–(76), we numerically solve for the electrostatic contribution to defect energy. Fig. 1 shows our estimate of
cell-size effects from finite cell simulations. As is evident from these results, R0 � 4r0 � 3a0 is necessary for the
approximation errors from finite cell-size studies to be within 1% of the defect energy—a threshold representative of
chemical accuracy. In typical electronic structure simulations this R0 corresponds to a simulation cell with 6�6�6 FCC
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Fig. 1. Cell-size effects showing relative error in the electrostatic contribution to the defect energy from finite cell calculations.
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unit cells containing 864 aluminum atoms. This estimate is in close agreement with recent cell-size studies on vacancy
formation energies conducted in Gavini et al. (2007a) and Radhakrishnan and Gavini (2010), where about 103 atoms were
required for the cell-size effects in defect formation energy to be within 0.01 eV. We note that despite the exponential
decay in the electronic fields, cell-size effects are significant, even for a simple defect like vacancy. In the more accurate
models of density functional theory, like the Kohn–Sham formulation, the decay in electronic fields is known to be slower
and hence cell-sizes beyond those considered in previous electronic structure studies may be needed for an accurate study
of defects.

We now consider the elastic contribution of the defect energy, i.e., the first term on the r.h.s. of Eq. (50), which is a
standard calculation and provide it for the sake of completeness. For simplicity, we assume that the stiffness tensor of
the crystal, defined by (41), is isotropic and that the ‘‘eigenstress’’ B is dilatational. Let m be the shear modulus, k be
the bulk modulus, and B¼ s0I (I is the identity matrix). Based on Eshelby’s (1957) solution, we find that the displacement
is given by

y¼rx, x¼
1
2Y1r2þY0 if jxjrr0,
1
2Y2r2þY3

1
r if r0o jxjoR0,

(

where Y1,Y2,Y3 2 R are constants to be determined. Indeed, by direct calculations we verify that the function y given by
the above expression satisfies the last of Eq. (51) inside the ball ror0 and inside the annulus region r0oroR0. Across the
interface r¼r0, the continuity of y, the continuity of traction and the boundary condition y¼ 0 at r¼R0 imply

Y1 ¼Y2�Y3=r3
0 , rs0þ3kY1 ¼ 3kY2þ4mY3=r3

0 , Y2�Y3=R3
0 ¼ 0:

Direct calculation reveals that

Y1 ¼
rs0

4mþ3k
r3

0

R3
0

�1

 !
:

Therefore, the elastic contribution to the defect energy is given by

Eel
d ðR0Þ :¼

1

2

Z
rr r0

rry � s0I¼
3rs0

2
Y1 ¼

3r2s2
0

2ð4mþ3kÞ
r3

0

R3
0

�1

 !
:

The elastic contribution of the defect energy has a slower asymptotic decay (Oð1=R3
0Þ) in comparison to the electronic

contribution and is one other reason to consider large cell-sizes to ensure the accurate computation of the energetics of
defects.

7. Extensions

The form of OFDFT energy we considered for the multiple scale analysis in prior sections represents an orbital-free
model with TFW kinetic energy functionals without exchange and correlation terms. In this section we comment on other
general forms of energies that are widely used in OFDFT computations. We remark that the multiple scale analysis is
independent of the form of the non-linear term f(u) appearing in Eq. (3), and thus including the exchange and correlation
energies does not affect the analysis or the derived expressions. However, the non-local kernel energies cannot be
represented by a local function of the form f(u), and we now present the extension of our analysis to these commonly used
kinetic energy functional forms.

The OFDFT formulations employed in numerical studies widely use functional forms for kinetic energy that are
non-local in real-space, called kernel energies, which are considered to be more accurate than the local TFW functionals
(cf. Eq. (2)). We refer to Wang and Teter (1992), Smargiassi and Madden (1994) and Wang et al. (1998, 1999) for further details
on these models. We also remark that recent analysis (Blanc and Cancés, 2005) has shown that some of the proposed models
lack global stability and can pose serious numerical issues. For the sake of completeness, we briefly discuss the multiple scale
analysis of these non-local kernel energies. The functional form of these kernel energies is given by

EKerðuÞ ¼

Z
Y

Z
Y

pðuðxÞÞKðjx�x0jÞqðuðx0ÞÞ dx dx0, ð78Þ

where p(u),q(u) are functions whose specific form depends on the particular flavor of the OFDFT model, and the total energy is
given by

Eðf,u; byÞ ¼

Z
Y

f ðuÞþ
1

2
jruj2�

1

2
jrfj2þðu2þbyÞf

� �
dxþEKerðuÞ: ð79Þ

We define the following potentials which will be used to reformulate the non-local kernel energy given by Eq. (78) into a local
variational problem:

VpðxÞ ¼

Z
Y

Kðjx�x0jÞpðuðx0ÞÞ dx0, VqðxÞ ¼

Z
Y

Kðjx�x0jÞqðuðx0ÞÞ dx0: ð80Þ
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Taking the Fourier transform of the above expressions we obtain

V̂ pðkÞ ¼ K̂ ðjkjÞp̂ðkÞ, V̂ qðkÞ ¼ K̂ ðjkjÞq̂ðkÞ: ð81Þ

Following the ideas developed in Choly and Kaxiras (2002), K̂ can be modeled to good accuracy using a sum of partial
fractions of the form,

K̂ ðjkjÞ �
Xm

j ¼ 1

Pjjkj
2

jkj2þQj

, ð82Þ

where Pj, Qj, j¼ 1, . . . ,m are constants which are fitted to best reproduce K̂ ðjkjÞ. These constants can possibly be complex,
but appear in pairs with complex conjugates. Substituting this approximation for K̂ in Eq. (81) and taking the inverse
Fourier transforms, we obtain a system of partial differential equations with possibly complex coefficients given by

�DVpjþQjVpjþPjDpðuÞ ¼ 0, j¼ 1, . . .m,

�DVqjþQjVqjþPjDqðuÞ ¼ 0, j¼ 1, . . .m,

(
ð83Þ

where Vpj and Vqj are the inverse Fourier transforms of
Pjjkj

2

jkj2þQj

p̂ðkÞ and
Pjjkj

2

jkj2þQj

q̂ðkÞ, respectively, for j¼ 1 . . .m. Further,

Vp �
P

jVpj,Vq �
P

jVqj. By defining jpj ¼ Vpj�PjpðuÞ and jqj ¼ Vqj�PjqðuÞ for j¼ 1 . . .m, Eq. (83) can be rewritten as

�DjpjþQjjpjþPjQjpðuÞ ¼ 0, j¼ 1 . . .m,

�DjqjþQjjqjþPjQjqðuÞ ¼ 0, j¼ 1 . . .m:

(
ð84Þ

The kernel energy, EKer, can now be expressed in a local form in terms of the potentials jpj,jqj, or equivalently as a local

saddle point problem:

EKerðuÞ ¼min
jpj

max
jqj

Xm

j ¼ 1

1

PjQj

Z
Y
rjpj � rjqjdxþ

1

Pj

Z
Y
jpjjqjdx

8<
: þ

Z
Y
jqjpðuÞdxþ

Z
Y
jpjqðuÞ dxþPj

Z
Y

pðuÞqðuÞ dx

�
: ð85Þ

We note that variations with respect to jpj and jqj return the Euler–Lagrange equations given by Eq. (84), and the saddle

point problem correctly represents, within the approximation (82), the kernel energy and its functional derivatives.
We now decompose the potential fields (jpj,jqj) into a predictor (jpjp

,jqjp
) and a corrector (jpjc

,jqjc
), and expand the

corrector fields using a two-scale expansion given by

jpjc
ðxÞ ¼j0

pjc
ðx, ~xÞþZj1

pjc
ðx, ~xÞþ . . . ,

jqjc
ðxÞ ¼j0

qjc
ðx, ~xÞþZj1

qjc
ðx, ~xÞþ . . . :

8<
: ð86Þ

Following on similar lines as in Section 4, we obtain the following expressions for j¼ 1 . . .m from the leading order terms
of the expansion in Eq. (86):

r ~xj0
pjc
ðx, ~xÞ ¼ 0 and r ~xj0

qjc
ðx, ~xÞ ¼ 0, ð87Þ

r ~xj1
pjc
ðx, ~xÞ ¼ 0 and r ~xj1

qjc
ðx, ~xÞ ¼ 0: ð88Þ

Thus, the corrector fields in their leading and first order are independent of the fast variable representing the lattice length
scale. The governing equations for j0

pjc
ðxÞ and j0

qjc
ðxÞ are given by

�Dj0
pjc
þQjj0

pjc
þxpðF̂

�
Þu0

c ¼ 0 on Y ,

�Dj0
qjc
þQjj0

qjc
þxqðF̂

�
Þu0

c ¼ 0 on Y ,

8<
: ð89Þ

where

xpðF̂
�
Þ ¼ �

Z
F̂
�
U0

p0ðupðF̂
�
, ~xÞÞ d ~x, xqðF̂

�
Þ ¼ �

Z
F̂
�
U0

q0ðupðF̂
�
, ~xÞÞ d ~x:

Further, the governing equations for ðf0
c ,u0

c Þ are given by

Df0
c þ2aðF̂

�
Þu0

c þbc ¼ 0 on Y ,

�Du0
c þ2 ~gðF̂

�
Þu0

c þ2aðF̂
�
Þf0

c þ
Xm

j ¼ 1

ðxpðF̂
�
Þj0

qjc
þxqðF̂

�
Þj0

pjc
Þ ¼ 0 on Y ,

8>><
>>: ð90Þ

where

~gðF̂
�
Þ ¼ gðF̂

�
Þþ

1

2

Xm
j ¼ 1

wpjðF̂
�
ÞþwqjðF̂

�
ÞþcjðF̂

�
Þ

�
,

�

V. Gavini, L. Liu / J. Mech. Phys. Solids 59 (2011) 1536–1551 1549



Author's personal copy

wpjðF̂
�
Þ ¼ �

Z
F̂
�
U0

p00ðupðF̂
�
, ~xÞÞjqjp

ðF̂
�
, ~xÞ d ~x,

wqjðF̂
�
Þ ¼ �

Z
F̂
�
U0

q00ðupðF̂
�
, ~xÞÞjpjp

ðF̂
�
, ~xÞ d ~x,

cjðF̂
�
Þ ¼ �

Z
F̂
�
U0

�
p00ðupðF̂

�
, ~xÞÞqðupðF̂

�
, ~xÞÞþ2p0ðupðF̂

�
, ~xÞÞq0ðupðF̂

�
, ~xÞÞþpðupðF̂

�
, ~xÞÞq00ðupðF̂

�
, ~xÞÞ

�
d ~x:

Finally, we comment that the results obtained with OFDFT as the model theory are equally valid for the field
formulations that describe empirical interatomic potentials presented in Iyer and Gavini (2011). We note that the field
formulation presented in Iyer and Gavini (2011) result in a system of coupled linear partial differential equations which
represent a special case of the non-linear governing equations describing OFDFT.

8. Summary

The main idea behind the quasi-continuum reduction of field theories is the coarse-graining of corrector fields in the
formulation using an unstructured finite-element triangulation. In this work we have presented a formal mathematical
justification that supports such a coarse-graining, and places the quasi-continuum reduction of field theories on a firm
mathematical footing. In particular, we have demonstrated using perturbation method and multiple scale analysis that the
corrector fields do not exhibit fine-scale (atomic-scale) oscillations in the leading order, which allows for the coarse-
graining of these fields. Further, we have derived the homogenized equations that govern the macroscopic far-field nature
of these corrector fields, and using Fourier analysis we have estimated their far-field asymptotic behavior. In the case of
orbital-free density functional theory with TFW kinetic energy functionals, the electronic fields comprising the electrostatic
potential and electron density are found to exhibit an exponential decay.

Using the computed asymptotic behavior of these corrector fields, we have estimated the errors incurred in the
computation of defect energies using finite cell simulations. Although the electronic fields exhibit an exponential decay,
our analysis shows that cell-sizes of the order of 103 atoms are required for an accurate computation of defect energies,
which is in keeping with recent cell-size studies conducted in Gavini et al. (2007a) and Radhakrishnan and Gavini (2010).
We note that in the more accurate versions of density functional theory, like the Kohn–Sham formulation, the decay in
electronic fields is known to be slower. Further, the asymptotic decay in elastic fields is much slower than electronic fields
and this effect can become very significant for stronger defects like dislocations. This suggests that larger cell-sizes than
those that are typically used in electronic structure calculations (� 100 atoms) are needed for an accurate study of defects
in materials.

A priori estimates on the asymptotic behavior of corrector fields from this work can be used to determine the optimal
coarse-graining rates for finite-element triangulations in the quasi-continuum formulation of field theories, and presents
itself as a worthwhile future direction to pursue. Further, developing the quasi-continuum reduction of Kohn–Sham
density functional theory and an analysis of this formulation is an important open problem, which is the focus of our
future work.
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