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Abstract

In this paper we consider the problem of characterizing the set of the effective
tensors of multiphase composites, including those of conductive materials and elastic
materials. We first present a novel derivation of the Hashin-Shtrikman (HS) bounds
for multiphase composites and the associated attainment condition. The attainment
condition asserts that the HS bound is attainable if and only if there exists a second
gradient field that is constant in all but the matrix phases. By restricting and
constructing such second gradient fields, we obtain a series of sufficient conditions
such that the HS bounds are attainable or unattainable. These attainability and
unattainability results appear new for a generic situation. For special situations,
our attainability and unattainability results recover the results of [26, 32, 11, 1].
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1. Introduction

Since the seminal works of Hashin & Shtrikman [15, 17], finding optimal bounds
on the effective properties, with or without restriction on the volume fractions, has
become the central problem in the theory of composites [28]. The usual approach of
finding optimal bounds consists of two steps: the first is to derive a microstructure-
independent bound and the second is to study if this bound is attainable and
if so, by what kind of microstructures. The optimal bounds can be categorized
into two types according to the methods of derivation: the Hashin-Shtrikman (HS)
bounds and the translation bounds [34, 24, 27]. The attaining microstructures in-
clude coated spheres and ellipsoids [14, 26], multi-coated spheres [25] and multi-rank

Article submitted to Royal Society TEX Paper



2 L.P. Liu

laminations. By this approach, the G-closure problem [24, 36] for two-phase well-
ordered conductive materials has been resolved [29, 12]. However, for multiphase
composites, little is known about the attainability of the HS bounds.

In this paper we address the attainability of the HS bounds for general mul-
tiphase composites. We also present a new derivation of the HS bounds, which is
motivated by the observation that the gradient field associated with an optimal
microstructure is often the second gradient of a scalar potential [23]. Similar ar-
gument has been used by Silvestre [33]. The advantage of the new derivation is
that it provides a necessary and sufficient attainment condition for the optimal
microstructures and the associated gradient fields. In a periodic setting, the at-
tainment condition is simply that the second gradient of the scalar potential is
constant in all but the matrix phases, see (2.22). This attainment condition forms
an overdetermined problem (2.22) for the microstructure and might seem too re-
strictive at the first sight. Nevertheless, using variational inequalities [22, 10] we can
show the existence of these optimal periodic microstructures which we call periodic
E-inclusions [23]. The results in Section 2 can then be roughly stated as a periodic
microstructure attains the HS bound if, and only if the microstructure is a corre-
sponding periodic E-inclusion (cf., Theorem 2.1). Therefore, from the attainability
of the HS bound for one particular set of materials, we can infer the existence of a
corresponding periodic E-inclusion, and hence the attainability of the HS bounds
for many different sets of materials (cf., Corollary 2.2).

As far as the attainability of HS bounds is concerned, it suffices to study the exis-
tence of periodic E-inclusions. Gradient Young measures and quasiconvex functions
have proven to be useful in describing, constructing and restricting microstructures
[35, 5]. For an excellent introduction to these concepts, the reader is referred to
the textbook of Evans [9]. Based on the gradient field of a periodic E-inclusion, we
define a particular form of gradient Young measures as sequential E-inclusions (cf.,
(3.1)). From the basic relation between gradient Young measures and quasiconvex
functions [20, 21], we can restrict sequential E-inclusions (and hence attainable HS
bounds) by quasiconex functions. More restrictions on periodic E-inclusions can be
found by the maximum principle. From these restrictions on sequential E-inclusions,
we obtain sufficient conditions for unattainable HS bounds.

To construct optimal microstructures for multiphase composites, we may take
elementary microstructures, e.g., simple laminates and coated spheres , as building
blocks and construct multi-rank laminations and multi-coated spheres [26, 12, 11, 1].
This procedure is delicate, requiring tedious calculations. Taking the advantage of
convexity properties of gradient Young measures (cf., Theorem 3.1), we focus on
the optimal gradient fields and construct a class of optimal microstructures that
can attain the HS bounds. From these optimal microstructures, we obtain sufficient
conditions for attainable HS bounds.

We remark that the attainability and unattainability results in this paper apply
broadly to various physical properties, and the individual phases and the composites
are not necessarily isotropic, though some symmetries on the “softest” or “stiffest”
phase are required for deriving the HS bounds. Further, the HS bounds in their
classic form (A.1) are well understood, see e.g. [39, 26, 3, 4]. The dual bounds
(2.18) are often referred to as the translation bounds. Mentions should be made
of the works of Grabovsky [13] who, based on the translation method, has derived
attainment conditions for two-phase composites which are closely related to ours,
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also see [1, 2] for two dimensional three-phase composites and [33] for cross-property
bounds.

The paper is organized as follows. In Section 2 we derive the HS bounds for
multiphase composites and establish the equivalence between the attainability of
the HS bounds and the existence of a corresponding periodic E-inclusion. In Sec-
tion 3 we focus on the optimal gradient fields, introduce the concept of sequential
E-inclusions, find restrictions on sequential E-inclusions, and construct a class of
sequential E-inclusions. In Section 4, we find a series of sufficient conditions for
attainable HS bounds and unattainable HS bounds. Finally, in Section 5 we sum-
marize our results and discuss the directions of generalization.

For future convenience, we introduce some notation. For two symmetric linear
mappings L1, L2 : Rm×n → Rm×n, we write L1 ≥ (≤)L2 if L1 − L2 is positive
(negative) semi-definite and denote by N ( · ) (R( · )) the null (range) space of a
symmetric linear mapping ( · ). For any F1,F2 ∈ Rm×n, the inner product is defined
as F1 · F2 = Tr(F1FT

2 ). If m = n, we denote by Rn×n
sym the symmetric matrices in

Rn×n. We follow the conventions 1/∞ = 0, 1/0 = ∞ and interpret the inverse L−1

of a symmetric positive semi-definite linear mapping L : Rm×n → Rm×n as

F2 · L−1F2 = sup
F1∈Rm×n

{2F2 · F1 − F1 · LF1} ∀F2 ∈ Rm×n. (1.1)

Further, let Y = (0, 1)n be a unit cell. For a function f : Rn → R, f being periodic
on Y means f(x + r) = f(x) ∀ x ∈ Rn and r ∈ Zn. Denote by L2

per(Y ) = {f | f :
Rn → R is periodic on Y and

∫
Y
|f |2 < +∞}, and W k,p

per (Y,Rm) the set

{u | u : Rn → Rm is periodic on Y and
∫

Y

[
∑

|α|≤k

|Dαu|p < +∞}.

2. Hashin-Shtrikman bounds and their attainment
conditions

Let Ωi (i = 0, · · · , N) with |∂Ωi| = 0 be a measurable disjoint subdivision of the
unit cell Y = (0, 1)n and θi = |Ωi|/|Y | 6= 0 be their volume fractions. Without
loss of generality, we assume Ω1, · · · ,ΩN are closed and Ω0 is open in Y , and refer
to O = (Ω1, · · · ,ΩN ) as the microstructure of the composite. Consider a periodic
(N + 1)-phase composite

L(x,O) = Li if x ∈ Ωi (i = 0, 1, · · · , N), (2.1)

where Li : Rm×n → Rm×n (i = 0, · · · , N) is either a positive definite symmetric
tensor or an elasticity tensor with the usual symmetries. These tensors describe the
materials properties of the constituent phases which include but are not limited to
conductive and elastic properties.

From the homogenization theory [37, 18, 8], the effective tensor Le(O) of the
periodic composite (2.1) is given by

F · Le(O)F = min
v∈W 1,2

per(Y,Rm)

∫
−

Y

(∇v + F) · L(x,O)(∇v + F)

= min
f∈L2

per(Y )
min
∇·v=f

∫
−

Y

(∇v + F) · L(x,O)(∇v + F) ∀F ∈ Rm×n. (2.2)
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4 L.P. Liu

Here and subsequently,
∫−

V
·= 1

volume(V )

∫
V
· denotes the average value of the inte-

grand in region V . A minimizer of the right hand side, which is unique within an
additive constant and denoted by u ∈ W 1,2

per(Y,Rm), solves the following equation
{

div
[
L(x,O)(∇u + F)

]
= 0 on Y,

periodic boundary conditions on ∂Y.
(2.3)

A problem of critical importance is to calculate the effective properties of a
composite based on the observed microstructure O. The effective tensor Le(O),
however, depends on the detailed microstructure of the composite in a way that is
difficult to characterize. Therefore, it is often more useful to find sharp bounds on
the effective tensor in terms of simple features of the microstructure, e.g., volume
fractions, than to calculate the exact effective tensor. Such bounds include the
well-known Voigt and Reuss bounds [38, 31]

HΘ ≤ Le ≤ LΘ, (2.4)

where LΘ =
∑N

i=0 θiLi (HΘ = [
∑N

i=0 θiL−1
i ]−1) is the arithmetic (harmonic) mean.

Tighter bounds are obtained by Hashin & Shtrikman [15, 16].
Below we present a novel derivation of the HS bounds. Let I be the identity

matrix in Rn×n and, for simplicity, assume that m = n,
{

either Li ≥ Lc or Li ≤ Lc ∀ i = 0, · · · , N,

R(L0 − Lc) ⊂ {xI : x ∈ R}, R(Li − Lc) ⊃ Rn×n
sym ∀ i = 1, 2, · · · , N,

(2.5)

where, as the original Hashin and Shtrikman’s derivation, a comparison tensor Lc

{
(Lc)piqj = µc

1δijδpq + µc
2δpjδiq + λcδipδjq,

µc
1 > 0, kc = λc + µc

1 + µc
2 > 0

(2.6)

has been chosen. Note that the first line in (2.5) facilitates the following algebraic
estimate (2.10) whereas the second implies that for some a ∈ R, (L0−Lc)F = aI ⇔
Tr(F) = aI · (L0 −Lc)−1I and that Li −Lc is invertible on Rn×n

sym for i = 1, · · · , N .
The usefulness of these conditions will be clear later. We further denote by

Mci = I · (Li − Lc)−1I, γ =
N∑

i=0

θi

1/kc + Mci
, Mc∗ =

1
γ
− 1

kc
. (2.7)

For the lower HS bound, we assume that

Li ≥ Lc ∀ i = 0, 1, · · · , N. (2.8)

Then the integral on the right hand side (r.h.s.) of (2.2) is bounded from below as
∫

Y

{
(∇v + F) · [L(x,O)− Lc](∇v + F) + (∇v + F) · Lc(∇v + F)

}

≥
N∑

i=0

∫

Ωi

1
Mci

(f + TrF)2 + kc

∫

Y

f2 + F · LcF, (2.9)
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where, for the first term on the left hand side (l.h.s.) of (2.9), we have used the
algebraic inequality

(X + F) · (Li − Lc)(X + F) ≥ 1
Mci

[Tr(X + F)]2 ∀X ∈ Rn×n, (2.10)

and for the second term we have used
∫

Y

∇v · Lc∇v ≥ kc

∫

Y

[Tr(∇v)]2 = kc

∫

Y

f2. (2.11)

The above inequality can be conveniently shown by Fourier analysis. Further, we
can easily show that inequality (2.10) holds as an equality if and only if

(Li − Lc)(X + F) =
Tr(X + F)

Mci
I ∀ i = 0, · · · , N, (2.12)

and inequality (2.11) holds as an equality if and only if there is a scalar potential
ξ ∈ W 2,2

per(Y ) such that

v −
∫
−

Y

v = −∇ξ. (2.13)

Similarly, for the upper bound, we assume that

Li ≤ Lc ∀ i = 0, 1, · · · , N, (2.14)

and hence the inequality (2.10) holds with “≥” replaced by “≤”. Then the inner
minimum of the r.h.s. of (2.2) can be bounded from above as

min
∇ · v = f

∫

Y

· · · ≤ min
−∆ξ = f

∫

Y

{
(−∇∇ξ + F) · [L(x,O)− Lc](−∇∇ξ + F)

+(−∇∇ξ + F) · Lc(−∇∇ξ + F)
}

≤
N∑

i=0

∫

Ωi

1
Mci

(f + TrF)2 + kc

∫

Y

f2 + F · LcF. (2.15)

Plugging the r.h.s. of (2.9) or (2.15) into (2.2) and solving the outer minimization
problem in (2.2), we find that for any F ∈ Rn×n,

min
f∈L2

per(Y )

{ N∑

i=0

∫

Ωi

1
Mci

(f + TrF)2 + kc

∫

Y

f2
}

= (TrF)2/Mc∗, (2.16)

and the minimizer is unique and given by

f(x) = Tr(F)
Mci − Mc∗

Mc∗(1 + kcMci)
if x ∈ Ωi, i = 0, 1, · · · , N. (2.17)

Noticing the conditions (2.8) and (2.14) and the directions of the inequalities in
(2.9) and (2.15), by (2.2) we obtain that for any F ∈ Rn×n,

{
F · Le(O)F ≥ F · LcF + (TrF)2/Mc∗ if L(x,O) ≥ Lc,

F · Le(O)F ≤ F · LcF + (TrF)2/Mc∗ if L(x,O) ≤ Lc.
(2.18)
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We remark that the above bounds are equivalent to the HS bounds in their clas-
sic form [15, 16] and can be obtained by using the Hashin-Shtrikman’s variational
principle [29, 28], see details in the Appendix. The bounds (2.18) are microstructure-
independent in the sense that the number Mc∗ depends only on the materials prop-
erties Li and the volume fractions θi of the microstructure O. Further, we notice
that the well-orderedness conditions, i.e., (2.8) and (2.14), are weaker than the
well-orderedness conditions L(x,O) ≥ (or ≤) L0 in the usual derivation of the HS
bounds [28]. In the setting of elasticity, the well-orderedness of bulk modulus is
not required by the conditions (2.8) or (2.14) and our bounds (2.18) recover the
Walpole’s bounds on bulk modulus [39].

Subsequently, by the (lower or upper) HS bound (2.18) is attainable for F ∈
Rn×n we mean one of the inequality of (2.18) holds as an equality for some mi-
crostructure O. Since only one of the conditions L(x,O) ≥ Lc and L(x,O) ≤ Lc

can be satisfied after Lc being specified, it will be clear from the context which
inequality in (2.18) is under consideration.

We now study the attainment conditions for the microstructure O such that the
HS bounds (2.18) hold as equalities. We first consider the lower HS bound, i.e., the
case L(x,O) ≥ Lc, and assume that for some F ∈ Rn×n

sym the first inequality in (2.18)
holds as an equality. Let u be the corresponding solution to (2.3) with zero average
on Y . Tracking back our argument, we find that the first inequality in (2.18) holds
as an equality implies that (C1) the inequality (2.10) holds as an equality, (C2) the
inequality (2.11) holds as an equality, and (C3) f = ∇ · u is exactly the minimizer
given by (2.17). By (2.10) and (2.12), (C1) implies

(Li − Lc)(∇u + F) =
Tr(∇u + F)

Mci
I on Ωi, i = 0, · · · , N. (2.19)

By (2.11) and (2.13), (C2) implies

u = −∇ξ, (2.20)

for some scalar function ξ and, finally, by (2.17) (C3) implies

∇ · u = Tr(F)
Mci − Mc∗

Mc∗(1 + kcMci)
if x ∈ Ωi, i = 0, 1, · · · , N. (2.21)

Conversely, if (2.19), (2.20) and (2.21) are true, we can easily check that the first
inequality in (2.18) indeed holds as an equality. Lumping (2.19), (2.20), (2.21)
together, by (2.5) we write them as the following overdetermined problem





∆ξ =
∑N

i=0 piχΩi on Y,

∇∇ξ = Qi on Ωi, i = 1, · · · , N,

periodic boundary conditions on ∂Y,

(2.22)

where the symmetric matrices Qi (i = 1, · · · , N) are given by

Qi = F− Tr(F)
(1 + kcMc∗)

Mc∗(1 + kcMci)
(Li − Lc)−1I, (2.23)

and constants pi (i = 0, · · · , N), satisfying θ0p0 +
∑N

i=1 θipi = 0, are given by

pi = Tr(Qi) =
Tr(F)(Mc∗ − Mci)
Mc∗(1 + kcMci)

(i = 0, 1, · · · , N). (2.24)
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In particular, the second of (2.22) and (2.23) follow from (2.19), (2.20), and that
Li − Lc is invertible on Rn×n

sym for i = 1, · · · , N .
Similar calculations prevail for the attainment of the upper HS bound, i.e., the

case L(x,O) ≤ Lc, which will not be repeated here.
The overdetermined problem (2.22) places strong restrictions on the microstruc-

ture O = (Ω1, · · · ,ΩN ). For its analogy with an ellipsoid and its extremal properties
as presented above, we call the collection of domains (Ω1, · · · ,ΩN ) a periodic E-
inclusions [23]. The important parameters describing the properties of a periodic
E-inclusion are the symmetric matrices K = (Q1, · · · ,QN ) and the volume frac-
tions Θ = (θ1, · · · , θN ); they are related with the materials properties and applied
average field by (2.23) for an optimal composite attaining the HS bound (2.18).

We summarize below.

Theorem 2.1. Consider a periodic (N +1)-phase composite (2.1). Let Lc be given
by (2.6), Mc∗ be given by (2.7), and assume (L0, · · · ,LN ) satisfy (2.5).

(i) (HS bound). The effective tensor of the composite, given by (2.2), satisfies
the HS bounds (2.18).

(ii) (Attainment condition). For some F ∈ Rn×n
sym , the HS bound (2.18) is

attained by a periodic microstructure O if, and only if the microstructure O
is the corresponding periodic E-inclusion, i.e., the overdetermined problem
(2.22) admits a solution ξ ∈ W 2,2

per(Y ) for K = (Q1, · · · ,QN ) given by (2.23).

From the above theorem, in particular, the attainment condition, we see that the
attainability of the HS bound for an average applied field F ∈ Rn×n

sym is equivalent
to the existence of the corresponding periodic E-inclusion. In the next section we
will study conditions on symmetric matrices K and volume fractions Θ such that
the corresponding periodic E-inclusion exists or does not exists. This is a more
generic problem than the attainability of HS bounds since it is independent of
materials properties. After obtaining conditions for the existence or non-existence
of periodic E-inclusions, by (2.23) we can translate these conditions to conditions
on the materials properties (L0, · · · ,LN ), volume fractions Θ and average applied
field F such that the HS bounds (2.18) are attainable or unattainable.

Moreover, we notice that optimal microstructures, e.g., confocal ellipsoids and
multi-rank laminations, attain the HS bounds for many composites of different ma-
terials. From the viewpoint of equations (2.22) and (2.23), this corresponds to equa-
tion (2.23) has many different sets of solutions of (Lc,L0 · · · ,LN ) and F for given
symmetric matrices K = (Q1, · · · ,QN ) and volume fractions Θ = (θ1, · · · , θN ).
Therefore, it is useful to relate the attainability of the HS bounds of composites
of one set of materials to the attainability of the HS bounds of composites of a
different set of materials. From part (ii) of Theorem 2.1, we have

Corollary 2.2. Let (Lc,L0, · · · ,LN ) and (L′c,L
′
0, · · · ,L′N ) be two sets of tensors

satisfying (2.5) and (2.6), and assume that F,F′ ∈ Rn×n
sym satisfy

F− Tr(F)
(1 + kcMc∗)

Mc∗(1 + kcMci)
(Li − Lc)−1I (2.25)

= F′ − Tr(F′)
(1 + k′cMc′∗)

Mc′∗(1 + k′cMc′i)
(L′i − L′c)

−1I ∀ i = 1, · · · , N,
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where k′c,Mc′0, · · · ,Mc′N ,Mc′∗ as in (2.7) with Li replaced by L′i for all i = c, 0, · · · , N .
Then the periodic composite (2.1) of materials (L0, · · · ,LN ) attains the HS bound
(2.18) for F if, and only if the periodic composite (2.1) of materials (L′0, · · · ,L′N )
attains the HS bound (2.18) for F′.

3. Optimal microstructures: E-inclusions

The existence of periodic E-inclusions is addressed in a separate publication [23]
for a variety of symmetric matrices K = (Q1, · · · ,QN ) and volume fractions Θ =
(θ1, · · · , θN ). Below we find sufficient conditions on K and Θ such that a corre-
sponding periodic E-inclusion can be found or does not exist. This problem is
closely related with the problems studied in Müller & Šverák [30]. For the restric-
tions and constructions of periodic E-inclusions, it will be convenient to restate the
concept of periodic E-inclusions in terms of gradient Young measures.

Definition 3.1. Let K = (Q1, · · · ,QN ) ⊂ Rn×n
sym , Θ = (θ1, · · · , θN ) ∈ (0, 1)N ,

θ0 = 1 − ∑N
i=1 θi ∈ (0, 1), and p0 ∈ R be such that θ0p0 +

∑N
i=1 θiTr(Qi) = 0.

Corresponding to K and Θ, a sequential E-inclusion is a homogeneous gradient
Young measure ν that is generated by a sequence in W 1,p(Y ) for any 1 ≤ p < ∞,
has zero center of mass, and satisfies

ν =
N∑

i=1

θiδQi
+ θ0µ with suppµ ⊂ {X ∈ Rn×n

sym : Tr(X) = p0}, (3.1)

where δQi
is the Dirac mass at Qi and µ is a probability measure.

To see the motivation behind the above definition, we assume there exists a
periodic E-inclusion such that (2.22) admits a solution ξ ∈ W 2,2

per(Y ) for symmet-
ric matrices K and volume fractions Θ and let v(k)(x) be ∇ξ(kx)/k restricted to
Y . Then the gradient sequence ∇v(k) generates the corresponding sequential E-
inclusion, where the Dirac masses at Qi arise from Ωi for i = 1, · · · , N and the
requirement on suppµ arises from Ω0, see (2.22). The converse is also true in the
following sense: if there exists a sequential E-inclusion, there exists a sequence of
microstructures O(k) = (Ω(k)

0 , · · · ,Ω(k)
N ) and a sequence ξ(k) ∈ W 2,p

per(Y ) for any
1 ≤ p < ∞ such that for any continuous f : Rn×n → R with compact support,

lim
k→+∞

∫

Y

f(∇∇ξ(k) −
N∑

i=1

Qiχ
(k)
i + (p0 −∆ξ(k))Iχ(k)

0 ) = f(0), (3.2)

where χ
(k)
i is the characteristic function of Ω(k)

i . Note that equation (3.2) implies
Le(O(k)) attains the HS bounds (2.18) as k → +∞ if (Lc,L0, · · · ,LN ) are as in
Theorem 2.1 and F, K, Θ satisfy (2.23). Thus, the attainment condition in Theo-
rem 2.1 may be stated as: For some F ∈ Rn×n

sym , the HS bound (2.18) is attainable
if, and only if there exists a sequential E-inclusion with symmetric matrices K and
volume fractions Θ given by (2.23).

(a) Restrictions on periodic E-inclusions

There are non-obvious restrictions on matrices K and volume fractions Θ such
that the overdetermined problem (2.22) admits a solution. Liu, James & Leo [23]
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have shown that K and Θ necessarily satisfy

N∑

i=1

θiTr(Qi)Qi +
1
θ0

N∑

j=1

θjTr(Qj)
N∑

i=1

θiQi −
N∑

i=1

θiQ2
i

= θ0

∫
−

Ω0

(∇∇ξ)2 ≥ 1
θ0

[
N∑

i=1

θiQi]2, (3.3)

which follows from (2.22), the divergence theorem
∫

Y
∆ξ∇∇ξ =

∫
Y

(∇∇ξ)2, and
the Jensen’s inequality.

From the basic relation between gradient Young measures and quasiconvex func-
tions [20, 21], we have the following necessary and sufficient condition for the prob-
ability measure ν in (3.1) to be a sequential E-inclusion: for any quasiconvex func-
tions ψ : Rn×n → R satisfying |ψ(X)| ≤ C(|X|p + 1) for some C > 0 and some
1 ≤ p < ∞,

∫

Rn×n

ψ(X) dν(X) =
N∑

i=1

θiψ(Qi) + θ0

∫

Rn×n

ψ(X) dµ(X) ≥ ψ(0). (3.4)

Applying (3.4) to Rn×n
sym 3 ψ(X) = m · (Tr(X)X −X2)m for any m ∈ Rn (ψ is in

fact a null Lagrangian in this second gradient context), we obtain (3.3), see details
in [23]. Unfortunately, few explicit quasiconvex functions are known to yield useful
restrictions on K and Θ.

However, if the periodic E-inclusion (Ω1, · · · ,ΩN ) corresponding to K and Θ is
a priori assumed to be Lipschitz and so the solution to the overdetermined problem
(2.22) belongs to W 2,∞

per (Y ) [19], we can derive useful restrictions on K and Θ by the
maximum principle. To see this, for any unit vector m ∈ Rn let vm = m·(∇∇ξ)2m.
Since ξ ∈ W 2,∞

per (Y ), vm ∈ C∞(Ω0)∩C(Ω̄0). By the first equality of (2.22), we have

∇∇ξ(x+) = ∇∇ξ(x−) + (p0 − pi)n⊗ n = Qi + (p0 − pi)n⊗ n

for any x ∈ ∂Ωi ∩ ∂Ω0, where x+ (x−) denotes the boundary value approached
from inside (outside) Ω0, and n is the unit normal on ∂Ωi. Further, we find

{
∆vm ≥ 0 on Ω0,

vm = m · Λi(n)m on ∂Ω0 ∩ ∂Ωi, i = 1, · · · , N,
(3.5)

where Λi(n) = [Qi + (p0− pi)n⊗n]2. By the maximum principle we conclude that

|∇∇ξ|2 ≤ max{Tr(Λi(n)) : |n| = 1, i = 1, · · ·N} on Ω0, (3.6)

and that

l.h.s. of (3.3) ≤ θ0λMI, (3.7)

where

λM := max{m · Λi(n)m : i = 1, · · · , N, |m| = |n| = 1}.
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In particular, if Qi = Ipi/n, taking the trace of (3.3), by (3.6) we arrive at

N∑

i=1

θip
2
i ≤ θ0p

2
i∗ + 2pi∗

N∑

j=1

θjpj , (3.8)

where i∗ is the integer such that the r.h.s. of (3.8) is maximized among all i ∈
{1, · · · , N}.

(b) Constructions of sequential E-inclusions

Using a convexity property of gradient Young measures we can conveniently
construct complicated sequential E-inclusions from simple periodic E-inclusions.
For brevity, we refer to a gradient Young measure generated by a bounded sequence
in W 1,p as a W 1,p gradient Young measure. Recall the following two theorems:

Theorem 3.1. (Theorem 3.1, Kinderlehrer & Pedregal [20]) Let ν1 and ν2 be two
homogeneous W 1,∞ gradient Young measures with zero center of mass. Then for
each λ ∈ (0, 1), the measure (1− λ)ν1 + λν2 is also a homogeneous W 1,∞ gradient
Young measure with zero center of mass.

Theorem 3.2. (Theorem 3, Liu, James & Leo [23] ) Let Q ∈ Rn×n
sym be either

negative semi-definite or positive semi-definite. Then for each θ ∈ (0, 1), there exists
a W 1,∞ sequential E-inclusion of form

ν = θδQ + (1− θ)µ. (3.9)

From Theorem 3.2 and Theorem 3.1, we have

Theorem 3.3. Let K = (Q1, · · · ,QN ) be either all negative semi-definite or all
positive semi-definite and Θ = (θ1, · · · , θN ) satisfy

θ1, · · · , θN ∈ (0, 1), θ0 = 1−
N∑

i=1

θi ∈ (0, 1). (3.10)

Then there exists a W 1,∞ sequential E-inclusion of form

ν =
N∑

i=1

θiδQi + θ0µ. (3.11)

Proof. We prove the theorem by induction. If N = 1, the theorem holds by Theorem
3.2. Assume the theorem holds for 1 ≤ N ≤ k, below we show the theorem holds
for N = k + 1.

Let Θ = (θ1, · · · , θk+1) satisfy (3.10) for N = k+1. By multiplying the generat-
ing sequence v(k) by any constant a ∈ R, we see that there exists a W 1,∞ sequential
E-inclusions with aK and Θ if there exists a W 1,∞ sequential E-inclusions with
K = (Q1, · · · ,Qk+1) and Θ. Therefore, without loss of generality we assume that
K are all negative semi-definite. Let p0 ∈ R be such that θ0p0 +

∑k+1
i=1 θiTr(Qi) = 0

and α ∈ (0, 1) be such that αTr(Qk+1) + (1 − α)p0 = 0. If p0 = 0, the theorem
is trivial since Tr(Qi) ≤ 0 for all i = 1, · · · , k + 1. If Tr(Qi) = 0 for some i, the
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theorem follows from the inductive assumption, Theorem 3.1, and the Direct mass
supported at zero matrix is a gradient Young measure. Subsequently we assume
p0 > 0 and Tr(Qi) < 0 for all i = 1, · · · , k + 1.

Direct calculations verify that

α =
p0

p0 − Tr(Qk+1)
>

p0 − p0

∑k
i=1 θi +

∑k
i=1 θiTr(Qi)

p0 − Tr(Qk+1)
= θk+1, (3.12)

and that θk+1Tr(Qk+1) + θ0p0 > 0,

θk+1

α
(1− α) =

−Tr(Qk+1)θk+1

p0
< θ0. (3.13)

Define λ and θ′i (i = 1, · · · , k) by

λ =
θk+1

α
, (1− λ)θ′0 + λ(1− α) = θ0 and (1− λ)θ′i = θi . (3.14)

From (3.12) and (3.13), we see that λ ∈ (0, 1) and θ′0, · · · , θ′k > 0. In particular,
θ′0 > 0 follows from (3.13) and (1−λ)θ′0 = θ0−λ(1−α) = θ0− θk+1

α (1−α). Further,

k∑

i=0

θ′i =
1

1− λ

k∑

i=0

θi − λ(1− α)
1− λ

=
−λ +

∑k+1
i=0 θi

1− λ
= 1.

Thus, (θ′1, · · · , θ′k) satisfy (3.10) for N = k. By the inductive assumption, for N = k
we have the existence of a W 1,∞ sequential E-inclusion

ν1 =
k∑

i=1

θ′iδQi
+ θ′0µ1, (3.15)

where µ1 is a probability measure with

suppµ1 ⊂ {X ∈ Rn×n
sym :

k∑

i=1

θ′iTr(Qi) + θ′0Tr(X) = 0}.

By Theorem 3.2, we also have the existence of a W 1,∞ sequential E-inclusion

ν2 = αδQk+1 + (1− α)µ2, (3.16)

where µ2 is a probability measure with suppµ2 ⊂ {X ∈ Rn×n
sym : Tr(X) = p0}.

Let p′0 be such that
∑k

i=1 θ′iTr(Qi)+θ′0p
′
0 = 0. From (3.14), we have

∑k
i=1

θiTr(Qi)
1−λ +

p′0
1−λ [θ0 − λ(1− α)] = 0, which, by (3.13) and the definition of p0, implies

0 = [θ0 +
θk+1Tr(Qk+1)

p0
]p′0 − θk+1Tr(Qk+1)− p0θ0 (3.17)

=
1
p0

[θ0p0 + θk+1Tr(Qk+1)](p′0 − p0).
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If θ0p0 + θk+1Tr(Qk+1) = 0, by (3.13) and (3.14) we have θ′0 = 0. Thus, p0 = p′0
and we define

ν := λν2 + (1− λ)ν1 =
k+1∑

i=1

θiδQi
+ θ0µ, (3.18)

where the equality follows from (3.14), (3.15) and (3.16), µ = λ(1−α)
θ0

µ2 + (1−λ)θ′0
θ0

µ1

is a probability measure with supp µ ⊂ {X ∈ Rn×n
sym : Tr(X) = p0}. From Theorem

3.1 and Definition 3.1, we see that ν defined by (3.18) is a W 1,∞ sequential E-
inclusion corresponding to K and Θ. The proof of the theorem is completed.

4. Applications

The practical problem we attempt to solve is to characterize the effective tensors
that one can obtain by mixing multiple (≥ 3) materials with given volume fractions,
i.e., the GΘ-closure problem. We do not yet have a complete answer to this problem.
The progress lies in a series of sufficient conditions such that the HS bounds (2.18)
are attainable or unattainable. These results follow from Theorem 2.1, the restric-
tions and existence of periodic E-inclusions. We address composites of conductive
materials and elastic materials.

(a) Composites of conductive materials

Consider conductive composites of (N +1)-phases with conductivity tensors 0 <
A0, · · · ,AN ∈ Rn×n

sym and volume fractions θ0 ∈ (0, 1), Θ = (θ1, · · · , θN ) ∈ (0, 1)N .
According to (2.5), we assume

A0 = k0I, AN = kNI, (4.1)

A0 < A1,A2, · · · ,AN−1 < AN , (4.2)

and denote by Ae the effective conductivity tensor of a composite. To use Theorem
2.1, we set (Li)pjqk = δpq(Ai)jk for i = 0, · · · , N and choose (Lc)pjqk = k0δpqδjk

for the lower bound and (Lc)pjqk = kNδpqδjk for the upper bound. By (2.2), we
verify that the effective tensor Le can be written as (Le)piqj = δpq(Ae)ij . By (2.4)
and (4.2), we have

A0 < HΘ ≤ Ae ≤ AΘ < AN , (4.3)

where AΘ =
∑N

i=0 θiAi and HΘ = [
∑N

i=0 θiA−1
i ]−1. From (2.18) we have

{
Tr(FT F) + (TrF)2/McL

∗ ≤ A−1/2
0 AeA−1/2

0 · FT F ∀F ∈ Rn×n,

Tr(FT F) + (TrF)2/McU
∗ ≥ A−1/2

N AeA−1/2
N · FT F ∀F ∈ Rn×n,

(4.4)

or equivalently by (A.1),
{

Tr[(A−1/2
0 AeA−1/2

0 − I)−1] ≤ McL
∗ ,

Tr[(I−A−1/2
N AeA−1/2

N )−1] ≤ −McU
∗ ,

(4.5)
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where, by (2.7),
{

McL
i = Tr[(A−1/2

0 AiA
−1/2
0 − I)−1] > 0 i = 1, · · · , N,

McU
i = −Tr[(I−A−1/2

N AiA
−1/2
N )−1] < 0 i = 0, · · · , N − 1,

(4.6)

McL
∗ =

θ0 +
∑N

i=1 McL
i

θi

1+McL
i∑N

i=1
θi

1+McL
i

> 0, McU
∗ =

θN +
∑N−1

i=0 McU
i

θi

1+McU
i∑N−1

i=0
θi

1+McU
i

< −1. (4.7)

We remark that the bounds (4.3), (4.5) and (4.4) are valid without assum-
ing (4.1). We now discuss if these bounds completely describe the GΘ-closure,
i.e., the collection of effective conductivity tensors that one can obtain by mixing
(A0, · · · ,AN ) with volume fraction (θ0, · · · , θN ). We denote by GΘ the GΘ-closure
and Gout

Θ the set of symmetric matrices Ae that satisfy (4.4) or, equivalently, (4.3)
and (4.5). The set Gout

Θ ⊂ Rn×n
sym is clearly compact and convex and contains GΘ.

Further, for some Ae ∈ Gout
Θ , if both inequalities in (4.5) are strict and Ae < AΘ,

then Ae > HΘ. Thus, the HS bounds describe a generic boundary point of Gout
Θ in

the sense that

∂Gout
Θ = SL ∪ SU ∪ {Ae ∈ Gout

Θ : rank(AΘ −Ae) < n}, (4.8)

where

SL = {Ae ∈ Gout
Θ : Tr[(A−1/2

0 AeA−1/2
0 − I)−1] = McL

∗ },
SU = {Ae ∈ Gout

Θ : Tr[(A−1/2
N AeA−1/2

N − I)−1] = McU
∗ }, (4.9)

are two hypersurfaces in Rn×n
sym defined by the HS bounds (4.5). As demonstrated

by the following theorem, the attainability of the HS bounds, i.e., SL ∪ SU , plays
an important role in estimating how well Gout

Θ approximates GΘ.

Theorem 4.1. Consider conductive composites of (N +1)-phases with conductivity
tensors A0 < A1, · · · , AN−1 < AN . If (SL ∪ SU ) ⊂ GΘ, then

GΘ(A0, · · · ,AN ) = Gout
Θ (A0, · · · ,AN ). (4.10)

Proof. Let Ae be an interior point in Gout
Θ , A(t) = Ae + t(AΘ −Ae), t0 := inf{t :

A(t) ≥ 0}, and A = {A(t) : t0 < t < 1}. By (4.8) we have rank(AΘ −Ae) = n.
We verify that neither of the endpoints of A is contained in Gout

Θ since A(t0)−HΘ

is not positive semi-definite and Tr[(I−A−1/2
N A(1)A−1/2

N )−1] > −McU
∗ . Therefore,

A∩∂Gout
Θ contains at least two distinct points A(t1) and A(t2) that satisfy A(t1) <

A(0) < A(t2). Further, rank(AΘ −A(t)) = rank((1 − t)(AΘ −Ae)) = n for any
t0 < t < 1. By (4.8), we see both A(t1) and A(t2) are contained in SL ∪ SU . Since
SL ∪ SU ⊂ GΘ and the G-closure of A(t1) and A(t2) is closed and convex (see
[12]), we infer Ae = A(0) ∈ GΘ.

Grabovsky [12] has shown that all HS bounds are attainable and hence Gout
Θ =

GΘ for two-phase well-ordered conductive composites. In general, not all HS bounds
are attainable for multiphase composites. Below we give sufficient conditions for the
HS bounds become attainable or unattainable.
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14 L.P. Liu

Corollary 4.2. Let




QL
i = (A−1/2

0 AeA−1/2
0 − I)−1 − 1+McL

∗
1+McL

i
(A−1/2

0 AiA
−1/2
0 − I)−1 if Ae ∈ SL,

QU
i = −(I−A−1/2

N AeA−1/2
N )−1 + 1+McU

∗
1+McU

i
(I−A−1/2

N AiA
−1/2
N )−1 if Ae ∈ SU ,

KL = (QL
1 , · · · ,QL

N ) and KU = (QU
0 , · · · ,QU

N−1). (i) If KL (KU ) are all positive
semi-definite or all negative semi-definite, then the effective tensor Ae ∈ SL (SU ) is
attainable; (ii) if KL (KU ) and Θ violates (3.3) or (3.7) or (3.8), then the effective
tensor Ae ∈ SL (SU ) is unattainable.

Proof. By Theorem A.1, equation (A.2) and Theorem 2.1, equation (2.23), we see
that Ae ∈ SL (Ae ∈ SU ) is attainable if and only if there exists a sequential E-
inclusion corresponding to KL (KU ) and Θ. Part (i) of the Corollary follows from
Theorem 3.3 and part (ii) follows from the restrictions on periodic E-inclusions,
i.e., (3.3), (3.7) and (3.8).

Below we specialize the above results to isotropic composites of (N +1)-isotropic
phases of 0 < k0 < k1 < · · · < kN−1 < kN . Denote by ke the effective conductivity
of the composite. Then the HS bounds (4.4) can be written as

k0 + nk0/McL
∗ =: kL ≤ ke ≤ kU := kN + nkN/McU

∗ , (4.11)

where




McL
∗ = θ0+

∑N
i=1 θiMcL

i /(1+McL
i )∑N

i=1 θi/(1+McL
i )

,

McU
∗ = θN+

∑N−1
i=0 θiMcU

i /(1+McU
i )∑N−1

i=0 θi/(1+McU
i )

,

{
McL

i = nk0
ki−k0

,

McU
i = nkN

ki−kN
.

(4.12)

Further, by Corollary 4.2, the lower (upper) HS bound in (4.11) is attainable if
there exists a periodic E-inclusion corresponding to KL = (pL

1
n I, · · · ,

pL
N

n I) (KU =

(pU
0
n I, · · · ,

pU
N−1
n I)) and volume fractions Θ, where




pL
i = Tr(QL

i ) = McL
∗−McL

i

(1+McL
i )

i = 1, · · · , N,

pU
i = Tr(QU

i ) = McU
∗ −McU

i

(1+McU
i )

i = 0, · · · , N − 1.
(4.13)

By part (i) of Corollary 4.2, we conclude that the lower HS bound kL ≤ ke is
attainable if kL ≤ k1 and that the upper bound ke ≤ kU is attainable if kU ≥
kN−1. We remark that these attainability results concerning isotropic composites
of isotropic materials were first shown by Milton [26].

We now discuss the implication of (3.8). By (4.13) and (4.12), direct calculations
reveal that

pL
j

pL
i

− 1 =
ρji

θ0 −
∑N

k=1 θkρki

, ρji =
McL

i − McL
j

(1 + McL
j )

=
nk0(kj − ki)

(kj + (n− 1)k0)(ki − k0)
.

Note that ρji does not depend on volume fractions. By (3.8) we conclude that if

N∑

k=1

θkρ2
ki∗ > (θ0 −

N∑

k=1

θkρki∗)2, (4.14)
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then there exists no Lipschitz periodic E-inclusions, and hence the lower HS bound
kL is unattainable (by Lipschitz microstructures). We remark that, specialized to
two dimensions and three-phase composites, the above conditions on unattainable
HS bounds have been shown in [1, 7]. Similar results hold for the upper bound,
which we will not repeat here.

(b) Composites of elastic materials

We now consider elastic composites of (N + 1) phases with elasticity tensors
given by L0, · · · ,LN and volume fractions θ0, · · · , θN ∈ (0, 1). Let µ0 (µN ) be the
greatest (least) number such that for all 0 6= F ∈ Rn×n

sym with Tr(F) = 0,

2µ0|F|2 ≤ min
i∈{0,··· ,N}

F · LiF (2µN |F|2 ≥ max
i∈{0,··· ,N}

F · LiF), (4.15)

and κL
c (κU

c ) be the least (greatest) number in {I · LiI/n2 : i = 0, · · · , N},
(LL

c )piqj = µ0(δijδpq + δpjδiq) + (κL
c − 2µ0/n)δipδjq, and (LU

c )piqj = µN (δijδpq +
δpjδiq) + (κU

c − 2µN/n)δipδjq. Choosing LL
c as the comparison tensor for the lower

bound and LU
c as the comparison tensor for the upper bound, we write the HS

bounds (2.18) as for any F ∈ Rn×n,

F · LL
c F + (TrF)2/McL

∗ ≤ F · LeF ≤ F · LU
c F + (TrF)2/McU

∗ , (4.16)

where, by (2.7),

{
McL

i = I · (Li − LL
c )−1I,

McU
i = I · (Li − LU

c )−1I,





McL
∗ =

∑N
i=0 θiMcL

i /(1/kL
c +McL

i )∑N
i=0 θi/(1/kL

c +McL
i )

,

McU
∗ =

∑N
i=0 θiMcU

i /(1/kU
c +McU

i )∑N
i=0 θi/(1/kU

c +McU
i )

,
(4.17)

kL
c = κL

c +2µ0(1−1/n) and kU
c = κU

c +2µN (1−1/n). It is worthwhile noticing that
the lower (upper) bound in (4.16) is valid for general anisotropic elasticity tensors
L0, · · · ,LN . Below we assume that L0 and LN are isotropic with shear modulus µ0

and µN and equation (2.5) is satisfied.
Unlike conductivity problems we cannot determine the effective tensor Le by

(A.2). Thus, it is more difficult to show the attainability of a given effective elasticity
tensor. Nevertheless, we can discuss the attainability of a particular component of
the effective elasticity tensor, e.g., the bulk modulus. By Theorem 2.1 and Theorem
3.3, the lower bound in (4.16) is attainable for some F ∈ Rn×n

sym if

QL
i = F− Tr(F)

(1 + kL
c McL

∗ )
McL∗ (1 + kL

c McL
i )

(Li − LL
c )−1I (i = 1, · · · , N) (4.18)

are all negative semi-definite or all positive semi-definite, whereas the upper bound
in (4.16) is attainable for some F ∈ Rn×n

sym if

QU
i = F− Tr(F)

(1 + kU
c McU

∗ )
McU∗ (1 + kU

c McU
i )

(Li − LU
c )−1I (i = 0, · · · , N − 1) (4.19)

are all negative semi-definite or all positive semi-definite.
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We now focus on the bulk modulus. Let κe = I · LeI/n2 be the effective bulk
modulus of the composite. Choosing F = I in (4.16) we obtain

κL
c + 1/McL

∗ ≤ κe ≤ κU
c + 1/McU

∗ , (4.20)

which coincides with the Walpole’s bounds [39] for bulk modulus. If we assume
that L0, · · · ,LN are all isotropic tensors, then the symmetric matrices in (4.18)
and (4.19) can be written as

QL
i =

Tr(QL
i )

n
I =

(McL
∗ − McL

i )
McL∗ (1 + kL

c McL
i )

I, QU
i =

Tr(QU
i )

n
I =

(McU
∗ − McU

i )
McU∗ (1 + kU

c McU
i )

I,

and hence KL = (QL
1 , · · · ,QL

N ) (KU = (QL
0 , · · · ,QL

N−1)) are negative semi-definite
or positive semi-definite is equivalent to

McL
∗ ≥ max

i∈{1,··· ,N}
McL

i or McL
∗ ≤ min

i∈{1,··· ,N}
McL

i (4.21)

(
McU

∗ ≤ min
i∈{0,··· ,N−1}

McU
i or McU

∗ ≥ max
i∈{0,··· ,N−1}

McU
i

)
. (4.22)

Therefore, we conclude that the lower bound in (4.20) is attainable if (4.21) is
satisfied while the upper bound in (4.20) is attainable if (4.22) is satisfied. These
attainability results have been obtained by Milton [26]. Sufficient conditions for
unattainable HS bounds follow from similar discussions as for conductive compos-
ites, which we will not repeat here.

5. Summary and discussion

We have derived a necessary and sufficient condition for the HS bounds to be attain-
able. This condition yields a simple characterization of the optimal gradient fields
and motivates us to introduce the concept of (sequential) E-inclusions. A special
quasiconvex function and the maximum principle are used to restrict sequential E-
inclusions, while a convexity property of gradient Young measures is used to show
the existence of a class of sequential E-inclusions. From these results, we find suf-
ficient conditions on the attainable and unattainable HS bounds for composites of
any finite number of conductive materials or elastic materials in any dimensions.

We have restricted ourselves to periodic composites for the ease of the defini-
tion of the effective tensors (cf. (2.2)) and the formal proofs. Since any effective
tensors can be approximated arbitrarily well by those of periodic microstructures,
the results in this paper shall remain valid without assuming periodicity.

Since the G-closure of two well-ordered conductive materials can be realized
by multi-rank laminations [24, 36, 12], Theorem 2.1 suggests that sequential E-
inclusions in Theorem 3.2 can all be realized by multi-rank laminations. Further,
it is sufficient to consider simple laminations to prove Theorem 3.1, see [20]. From
these two facts we may infer that sequential E-inclusions in Theorem 3.3, and
therefore all attainable HS bounds in Section 4, can be realized by multi-rank
laminations. A formal proof of this statement is not pursued here.

To establish the existence of sequential E-inclusions without assuming positive
or negative semi-definite symmetric matrices K (cf., Theorem 3.3), we have to resort
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to the conventional way of constructions. We are aware of three types of construc-
tions that can give rise to sequential E-inclusions not covered by Theorem 3.3:

1. In the case of two dimensions (n = 2) and three phases (N = 2), the Sig-
mund and coworker’s constructions [32, 11] in effect asserts the existence of
sequential E-inclusions corresponding to K = (p1I/2, p2I/2) and Θ = (θ1, θ2)
if (3.8) is satisfied, i.e.,

θ1(
p1

p2
− 1)2 ≤ 1 or θ2(

p2

p1
− 1)2 ≤ 1.

We remark that the result of [2, 7] implies the above condition is also necessary
for the existence of sequential E-inclusions with K being isotropic matrices in
two dimensions.

2. In the case of two dimensions (n = 2) and three phases (N = 2), the con-
structions of [1] assert the existence of sequential E-inclusions not covered by
Theorem 3.3. However, we do not have a simple formula on K and Θ associ-
ated with sequential E-inclusions that can be realized by this constructions.

3. In two and higher dimensions, N ≥ 2, periodic E-inclusions can give rise to
sequential E-inclusions that have Dirac masses supported on both negative
definite matrices and positive definite matrices, see [23].

All the above constructions could be important in extending the attainable HS
bounds. A systematic study is underway and will be reported in the future.

Finally, we make a few comments on possible generalizations. First of all, one
notices that in Section 2 the minimization problem (2.2) may be tested with a
linear combination of the second gradient of a scalar potential. Then the restriction
of m = n may be removed and the cross-property bounds [6, 33] may be derived.
Further, the comparison material can be generalized without being restricted to the
form of (2.6). We can in fact extend our argument to the comparison tensors that
satisfy (m = n)

(Lc)piqj(k)i(k)j(k)q = kc|k|2(k)p ∀k ∈ Rn (5.1)

for some kc > 0, see [23]. Further, by a linear transformation

x −→ x′ = Λ−1x and v −→ v′ = G−1v, (5.2)

we can extend Theorem 2.1 to comparison tensors (while other conditions on ma-
terials properties in Theorem 2.1 remain unchanged)

(L′c)piqj = (G)rp(G)sq(Λ)ik(Λ)jl(Lc)rksl,

where G, Λ ∈ Rn×n are invertible, Lc satisfies (5.1). In fact we have used the
transformations (5.2) with Λ = A−1/2

0 (or Λ = A−1/2
N ) and G = I in writing the

bounds as (4.5) and (4.4). The reader is invited to formulate the precise statements
corresponding to Theorem 2.1 for tensors Lc of these forms.
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Appendix: the dual HS bounds

The HS bounds can be derived from the HS variational principle [29] and usually
take the following form

{
I · (Le − Lc)−1I ≤ Mc∗ if L(x,O) ≥ Lc,

I · (Lc − Le)−1I ≤ −Mc∗ if L(x,O) ≤ Lc.
(A.1)

The above bounds can be regarded as the dual bounds of (2.18). More precisely,

Theorem A.1. Assume (2.4) and (2.5). Then inequalities (2.18) are equivalent to
(A.1). Further, for some F ∈ R(Le − Lc) with Tr(F) 6= 0, one of the inequalities
in (2.18) holds as an equality if, and only if the corresponding inequality in (A.1)
holds as an equality. In this case, we have

F
Tr(F)

=
1

Mc∗
(Le − Lc)−1I. (A.2)

Proof. We note that (2.4) and (2.5) imply R(Le − Lc) ⊃ Rn×n
sym . Consider the case

L(x,O) ≥ Lc. To show (A.1) implies (2.18), by Le ≥ Lc, (1.1) and (A.1) we have

sup
F∈Rn×n

{2F · I− F · (Le − Lc)F} = I · (Le − Lc)−1I ≤ Mc∗. (A.3)

Choosing F with Tr(F) = Mc∗, we see that F · (Le − Lc)F ≥ Mc∗ = (TrF)2/Mc∗,
which, by multiplying F by a such that aTr(F) = Mc∗, in fact holds for any F
with Tr(F) 6= 0. If Tr(F) = 0, the first bound in (2.18) is obvious. Further, F′ =
(Le − Lc)−1I is a maximizer of the l.h.s. of (A.3). Therefore, if the first bound in
(A.1) holds as an equality, we have Tr(F′) = I · (Le − Lc)−1I = Mc∗ 6= 0, and

F′ · (Le − Lc)F′ = I · (Le − Lc)−1I = (TrF′)2/Mc∗.

Thus, the first inequality in (2.18) holds as an equality for aF′ with any a 6= 0, i.e.,
all F that satisfy (A.2).

Conversely, from the first bound in (2.18), choosing F = (Le−Lc)−1I we obtain
the first bound in (A.1). Further, if for some F ∈ R(Le − Lc) with Tr(F) 6= 0 the
first bound in (2.18) holds as an equality, we have

sup
P0∈Rn×n

{2P0 · F−P0 · (Le − Lc)−1P0} = F · (Le − Lc)F = (TrF)2/Mc∗.

Choosing P0 = Tr(F)I/Mc∗ we have

2Tr(F)2

Mc∗
− Tr(F)2

Mc2∗
I · (Le − Lc)−1I ≤ (TrF)2/Mc∗,

and hence I · (Le − Lc)−1I ≥ Mc∗, which, together with the first bound in (A.1),
implies that I · (Le −Lc)−1I = Mc∗, and that P0 = Tr(F)I/Mc∗ ∈ R(Le −Lc) is in
fact a maximizer of the l.h.s. of (A.4). On the other hand, the maximization problem
in (A.4) admits the unique maximizer (Le−Lc)F in R(Le−Lc), which then implies
(A.2). Thus, we complete the proof of Theorem A.1 for the case L(O,x) ≥ Lc.

The case Lc ≥ L(O,x) can be handled similarly and will not be repeated here.
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