(13) 1. Suppose $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ are real sequences, and that for all positive integers, n, $x_{n} \leq y_{n} \leq z_{n}$. If both $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ converge and have the same limit, L, prove that $\left\{y_{n}\right\}$ converges and its limit is L.
(13) 2. Suppose ($X, d)$ is a metric space. If P and Q are connected subsets of X with $P \cap Q \neq \emptyset$, prove that $P \cup Q$ is connected.
3. Suppose (X, d) is a metric space.
a) If A and B are subsets of X, prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
b) Give an example to show that the closure of the union of a countable number of subsets of X need not be equal to the union of the closures of each of the sets.
c) Give an example to show that $\overline{A \cap B}$ and $\bar{A} \cap \bar{B}$ need not be equal. Here A and B are subsets of X.
(15) 4. Suppose (X, d) is a metric space.
a) If A is a subset of X, prove that $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$.

Comment $\operatorname{diam}(S)=\sup \{d(x, y): x, y \in S\}$ if $S \subset X$.
b) Give an example of a subset A of X with $\operatorname{diam}(A) \neq \operatorname{diam}\left(A^{\circ}\right)$ and $A^{\circ} \neq \emptyset$. (A° is the interior of A.)
(15) 5. a) Suppose (X, d) is a metric space, K is a compact subset of X, U is an open subset of X, and $K \subset U$. Prove that there is $r>0$ so that $\bigcup_{k \in K} N_{r}(k) \subset U$.
b) Give an example to show that there can be a closed subset C of X and an open subset U of X with $C \subset U$ so that there is no $r>0$ with $\bigcup_{x \in C} N_{r}(x) \subset U$.
(14) 6. a) Prove directly from the definition of compactness that the half-open interval $(0,1] \subset \mathbb{R}$ is not compact. (\mathbb{R} has the usual topology.)
b) Prove that a Cauchy sequence in a metric space is bounded.
7. Suppose the following is known about three sequences:

$$
\begin{equation*}
\text { If } n \text { is a positive integer, then }\left|x_{n}-2\right|<\frac{5}{n},\left|y_{n}-6\right|<\frac{20}{\sqrt{n}} \text {, and }\left|z_{n}-5\right|<\frac{6}{n^{2}} \text {. } \tag{15}
\end{equation*}
$$

Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ converge, and their respective limits are 2,6 , and 5 . The sequence whose $n^{\text {th }}$ term is $x_{n} y_{n}-z_{n}$ converges and its limit is $2 \cdot 6-5=7$. Do not prove this, but find and verify a specific n so that $\left|\left(x_{n} y_{n}-z_{n}\right)-7\right|<\frac{1}{1,000}$. This need not be a "best possible" n but you must supply a specific n and a proof of your estimate.

First Exam for Math 411

October 20, 2008

NAME \qquad

Do all problems, in any order.

Problem Number	Possible Points	Points Earned:
1	13	
2	13	
3	15	
4	15	
5	15	
6	14	
7	15	
Total Points Earned:		

