
Math 411 Some answers to the Entrance “exam” 9/6/2008

1. (8 points) Suppose n is a positive integer. Prove that the product of any n consecutive
positive integers is divisible by n!.

Answer Here is one possible answer. If n and m are positive integers, let

Q(n, m) =
m(m + 1)(m + 2) · · · (m + n − 1)

n!
.

We need to prove that Q(n, m) is always an integer.

Easy observations If n = 1, then since 1! = 1, Q(1, m) is an integer. Also, if
m = 1, the denominator of Q(n, m) is n!, so the quotient is 1. Therefore Q(n, 1)
is an integer.

We have the beginning of an induction proof here. We need to decide which variable to
“induct” on. I’ll try to prove the following proposition:

A Suppose Q(n, m) is an integer for all positive integer m. Then Q(n + 1, m) is
an integer.

I will prove that Q(n + 1, m) is an integer using mathematical induction. Indeed, I know
that Q(n+1, 1) is an integer (one of the easy observations above). So I just need to prove:

B Suppose Q(n + 1, m) is an integer for some integer m. Then Q(n + 1, m + 1)
is an integer.

Let’s consider the difference between Q(n + 1, m + 1) and Q(n, m + 1):

(m + 1)(m + 2) · · · (m + n + 1)

(n + 1)!
−

(m + 1)(m + 2) · · · (m + n)

n!
=

(m + 1) · · · (m + n + 1)(m + n + 1 − (n + 1))

(n + 1)!
=

(m + 1)(m + 2) · · · (m + n + 1)m

(n + 1)!

This is Q(n + 1, m) (the m is on top at the “other” end!). Now we are assuming (B’s
hypothesis) that Q(n + 1, m) is an integer, and also are assuming (A’s hypothesis) that
Q(n, m + 1) is an integer. Therefore Q(n + 1, m + 1), a sum of these two, must be an
integer. So the implication B is correct, and therefore A is correct, and we have proved
what’s required.

Comments This proof is correct (I think!) but may be confusing. For example, I looked
at both Q(n + 1, m + 1) − Q(n, m + 1) and Q(n + 1, m + 1) − Q(n + 1, m), when I was
analyzing this problem. Probably a more correct approach is to realize that the numbers
count something. They do, but that realization needs to be justified. Or you could relate
Q(n, m) to binomial coefficients and then declare those are integers – that also must be
justified. A math cultural comment is that there are natural “objects” in mathematics
which are “bigraded” (depending on, say, two integers) and one possible way of verifying
properties of these objects is with a double inducation proof*.

* For example, some of the original proofs in Several Complex Variables about the vanishing
of certain cohomology groups are double induction algebraic masterpieces, considerably
more complicated than what is here. Now the usual methods to verify this vanishing
involve superficially simpler arguments with partial differential equations.



2. Suppose A is a non-empty subset of the positive integers, L is a real number, and {an}
is a sequence (a sequence is a real-valued function whose domain is the positive integers,
N). Then lim

n∈A
an = L means: for all ε > 0 there is N in A so that if n is in A and n > N ,

then |an − L| < ε.

a) (2 points) If A is a finite non-empty set, then lim
n∈A

an = L for all sequences {an} and for

all real numbers L.

Answer The logical statement to be proved is:
If ε > 0 there is N in A so that if n is in A and n > N , then |an − L| < ε.

Since A is finite, there is N , the maximum integer in the non-empty finite set A, so that
there is no n in A with n > N . If we use this N in the limit definition, we have an
implication where the hypothesis is always false. So the implication itself is true.

b) (6 points) Suppose A1, A2, . . . , Ak is a pairwise disjoint decomposition of the positive
integers into infinite subsets Aj with 1 ≤ j ≤ k. That is, each of the Aj ’s is an infinite
subset of the positive integers and each positive integer is in exactly one of the Aj ’s. Prove
that lim

n∈N

an = L if and only if lim
n∈Aj

an = L for all j.

Answer First, suppose lim
n∈N

an = L. Thus, given ε > 0 there is N in N so that if n > N ,

then |an − L| < ε. But since Aj ⊂ N, we know that “If n is in Aj and n > N , then
|an − L| < ε” is true since “n is in Aj and n > N” implies n > N .
Now take some ε > 0. We assume that for each j with 1 ≤ j ≤ k, there is Nj ∈ Aj so that
if n is in Aj and n > Nj , then |an−L| < ε. The set {N1, N2, . . . , Nk} is a finite non-empty

set of positive integers and therefore has a maximum, N . We also know that N =
k⋃

j=1

Aj.

Thus if n is any integer greater than N , n is in one of the Aj’s and n > N ≥ Nj . So
|an − L| < ε using the limit statement for that Aj. And we’re done.

c) (6 points) Is a statement similar to b) true if the positive integers are written as a union
of an infinite number of pairwise disjoint infinite subsets? Either prove such a statement
or give a counterexample.
Answer The implication is false. Here is one counterexample. Every positive number n

can be written as n = 2k(2j + 1) where j and k are unique non-negative integers. For
n described this way, define an to be 1

k+1
. Now let Aj for j ≥ 0 be all the integers

{2k(2j + 1)}k≥0. The sets {Aj} form a pairwise disjoint decomposition of the positive
integers, and each Aj has infinitely many elements. Surely lim

n∈Aj

an = 0 since 1

k+1
< ε

when k is larger than any integer in Aj greater than 1

ε
. But lim

n∈N

an is not 0. We look at a

specific value of ε: take ε = 1. Consider any positive integer N . Let n be any odd integer
larger than N (there are infinitely many!). Since an = 1 for odd integer n’s (for such n’s,
we have k = 0) we can’t conclude that |an − 0| = 1 is less than this ε.

Comment Here’s a better example, basically copied from answers written by several stu-

dents. Use the same collection of Aj ’s, but define an to be 1 if n is a power of 2 and 0
otherwise. Then on all of N the sequence doesn’t converge (it always has 0 and 1 terms
“high up”) and on each Aj the sequence converges to 0 (it is eventually equal to 0).


